include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,4,2}*384b
if this polytope has a name.
Group : SmallGroup(384,20049)
Rank : 5
Schlafli Type : {2,12,4,2}
Number of vertices, edges, etc : 2, 12, 24, 4, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,12,4,2,2} of size 768
{2,12,4,2,3} of size 1152
{2,12,4,2,5} of size 1920
Vertex Figure Of :
{2,2,12,4,2} of size 768
{3,2,12,4,2} of size 1152
{5,2,12,4,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,4,2}*192c
4-fold quotients : {2,3,4,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,12,4,2}*768b, {2,24,4,2}*768c, {2,24,4,2}*768d, {2,12,4,2}*768b
3-fold covers : {2,36,4,2}*1152b, {6,12,4,2}*1152d, {6,12,4,2}*1152f
5-fold covers : {10,12,4,2}*1920b, {2,60,4,2}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8,18)(10,14)(11,13)(12,26)(15,31)(16,34)(17,19)(20,36)
(21,22)(23,39)(24,42)(25,32)(27,30)(28,46)(29,43)(33,45)(37,48)(38,40)(41,50)
(44,47);;
s2 := ( 3,10)( 4, 6)( 5,21)( 7,11)( 8,45)( 9,13)(12,36)(14,22)(15,50)(16,44)
(17,28)(18,27)(19,31)(20,25)(23,46)(24,35)(26,40)(29,49)(30,41)(32,39)(33,38)
(34,43)(37,47)(42,48);;
s3 := ( 3,35)( 4,44)( 5,47)( 6,36)( 7,20)( 8,18)( 9,49)(10,45)(11,28)(12,31)
(13,46)(14,33)(15,26)(16,19)(17,34)(21,50)(22,41)(23,39)(24,27)(25,43)(29,32)
(30,42)(37,40)(38,48);;
s4 := (51,52);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 4, 5)( 6, 7)( 8,18)(10,14)(11,13)(12,26)(15,31)(16,34)(17,19)
(20,36)(21,22)(23,39)(24,42)(25,32)(27,30)(28,46)(29,43)(33,45)(37,48)(38,40)
(41,50)(44,47);
s2 := Sym(52)!( 3,10)( 4, 6)( 5,21)( 7,11)( 8,45)( 9,13)(12,36)(14,22)(15,50)
(16,44)(17,28)(18,27)(19,31)(20,25)(23,46)(24,35)(26,40)(29,49)(30,41)(32,39)
(33,38)(34,43)(37,47)(42,48);
s3 := Sym(52)!( 3,35)( 4,44)( 5,47)( 6,36)( 7,20)( 8,18)( 9,49)(10,45)(11,28)
(12,31)(13,46)(14,33)(15,26)(16,19)(17,34)(21,50)(22,41)(23,39)(24,27)(25,43)
(29,32)(30,42)(37,40)(38,48);
s4 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope