Polytope of Type {4,2,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,4,6}*384b
if this polytope has a name.
Group : SmallGroup(384,20051)
Rank : 5
Schlafli Type : {4,2,4,6}
Number of vertices, edges, etc : 4, 4, 4, 12, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,2,4,6,2} of size 768
Vertex Figure Of :
   {2,4,2,4,6} of size 768
   {3,4,2,4,6} of size 1152
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,4,3}*192, {2,2,4,6}*192b
   4-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,2,4,6}*768b, {4,2,4,6}*768
   3-fold covers : {4,2,4,18}*1152c, {12,2,4,6}*1152b, {4,2,12,6}*1152d
   5-fold covers : {20,2,4,6}*1920b, {4,2,20,6}*1920b, {4,2,4,30}*1920c
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 8,10);;
s3 := ( 7, 8)( 9,10);;
s4 := ( 5, 7)( 6, 9)( 8,10);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s2*s3*s4*s2*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(10)!(2,3);
s1 := Sym(10)!(1,2)(3,4);
s2 := Sym(10)!( 8,10);
s3 := Sym(10)!( 7, 8)( 9,10);
s4 := Sym(10)!( 5, 7)( 6, 9)( 8,10);
poly := sub<Sym(10)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s2*s3*s4*s2*s3*s4 >; 
 

to this polytope