include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,2}*384b
if this polytope has a name.
Group : SmallGroup(384,20051)
Rank : 4
Schlafli Type : {6,4,2}
Number of vertices, edges, etc : 24, 48, 16, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,4,2,2} of size 768
{6,4,2,3} of size 1152
{6,4,2,5} of size 1920
Vertex Figure Of :
{2,6,4,2} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,2}*192
4-fold quotients : {6,4,2}*96a, {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
8-fold quotients : {3,4,2}*48, {6,2,2}*48
12-fold quotients : {2,4,2}*32
16-fold quotients : {3,2,2}*24
24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4,2}*768d, {6,4,4}*768e, {6,8,2}*768f, {6,8,2}*768g, {6,4,2}*768b, {12,4,2}*768e
3-fold covers : {18,4,2}*1152b, {6,12,2}*1152b, {6,4,6}*1152b, {6,12,2}*1152f
5-fold covers : {6,20,2}*1920a, {6,4,10}*1920, {30,4,2}*1920b
Permutation Representation (GAP) :
s0 := ( 1, 5)( 2, 6)( 7,11)( 8,12);;
s1 := ( 3, 5)( 4, 6)( 7, 8)( 9,12)(10,11);;
s2 := ( 1, 7)( 2, 8)( 3,10)( 4, 9)( 5,11)( 6,12);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!( 1, 5)( 2, 6)( 7,11)( 8,12);
s1 := Sym(14)!( 3, 5)( 4, 6)( 7, 8)( 9,12)(10,11);
s2 := Sym(14)!( 1, 7)( 2, 8)( 3,10)( 4, 9)( 5,11)( 6,12);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >;
to this polytope