include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,2}*384b
if this polytope has a name.
Group : SmallGroup(384,20062)
Rank : 4
Schlafli Type : {12,6,2}
Number of vertices, edges, etc : 16, 48, 8, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,6,2,2} of size 768
{12,6,2,3} of size 1152
{12,6,2,5} of size 1920
Vertex Figure Of :
{2,12,6,2} of size 768
{3,12,6,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,3,2}*192, {6,6,2}*192
4-fold quotients : {3,6,2}*96, {6,3,2}*96
8-fold quotients : {3,3,2}*48
24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,12,2}*768b, {12,6,2}*768, {12,12,2}*768c, {12,6,4}*768b
3-fold covers : {12,6,2}*1152c, {12,6,6}*1152c, {12,6,2}*1152d
5-fold covers : {12,30,2}*1920a, {12,6,10}*1920b, {60,6,2}*1920b
Permutation Representation (GAP) :
s0 := ( 3, 5)( 4, 6)( 7, 8)( 9,17)(10,18)(11,21)(12,22)(13,19)(14,20)(15,24)
(16,23)(25,26)(27,30)(28,29)(33,42)(34,41)(35,46)(36,45)(37,44)(38,43)(39,47)
(40,48)(51,53)(52,54)(55,56)(57,65)(58,66)(59,69)(60,70)(61,67)(62,68)(63,72)
(64,71)(73,74)(75,78)(76,77)(81,90)(82,89)(83,94)(84,93)(85,92)(86,91)(87,95)
(88,96);;
s1 := ( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,25)(10,26)
(11,28)(12,27)(13,31)(14,32)(15,29)(16,30)(17,41)(18,42)(19,44)(20,43)(21,47)
(22,48)(23,45)(24,46)(49,81)(50,82)(51,84)(52,83)(53,87)(54,88)(55,85)(56,86)
(57,73)(58,74)(59,76)(60,75)(61,79)(62,80)(63,77)(64,78)(65,89)(66,90)(67,92)
(68,91)(69,95)(70,96)(71,93)(72,94);;
s2 := ( 1,79)( 2,80)( 3,76)( 4,75)( 5,77)( 6,78)( 7,73)( 8,74)( 9,95)(10,96)
(11,92)(12,91)(13,93)(14,94)(15,89)(16,90)(17,87)(18,88)(19,84)(20,83)(21,85)
(22,86)(23,81)(24,82)(25,55)(26,56)(27,52)(28,51)(29,53)(30,54)(31,49)(32,50)
(33,71)(34,72)(35,68)(36,67)(37,69)(38,70)(39,65)(40,66)(41,63)(42,64)(43,60)
(44,59)(45,61)(46,62)(47,57)(48,58);;
s3 := (97,98);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!( 3, 5)( 4, 6)( 7, 8)( 9,17)(10,18)(11,21)(12,22)(13,19)(14,20)
(15,24)(16,23)(25,26)(27,30)(28,29)(33,42)(34,41)(35,46)(36,45)(37,44)(38,43)
(39,47)(40,48)(51,53)(52,54)(55,56)(57,65)(58,66)(59,69)(60,70)(61,67)(62,68)
(63,72)(64,71)(73,74)(75,78)(76,77)(81,90)(82,89)(83,94)(84,93)(85,92)(86,91)
(87,95)(88,96);
s1 := Sym(98)!( 1,33)( 2,34)( 3,36)( 4,35)( 5,39)( 6,40)( 7,37)( 8,38)( 9,25)
(10,26)(11,28)(12,27)(13,31)(14,32)(15,29)(16,30)(17,41)(18,42)(19,44)(20,43)
(21,47)(22,48)(23,45)(24,46)(49,81)(50,82)(51,84)(52,83)(53,87)(54,88)(55,85)
(56,86)(57,73)(58,74)(59,76)(60,75)(61,79)(62,80)(63,77)(64,78)(65,89)(66,90)
(67,92)(68,91)(69,95)(70,96)(71,93)(72,94);
s2 := Sym(98)!( 1,79)( 2,80)( 3,76)( 4,75)( 5,77)( 6,78)( 7,73)( 8,74)( 9,95)
(10,96)(11,92)(12,91)(13,93)(14,94)(15,89)(16,90)(17,87)(18,88)(19,84)(20,83)
(21,85)(22,86)(23,81)(24,82)(25,55)(26,56)(27,52)(28,51)(29,53)(30,54)(31,49)
(32,50)(33,71)(34,72)(35,68)(36,67)(37,69)(38,70)(39,65)(40,66)(41,63)(42,64)
(43,60)(44,59)(45,61)(46,62)(47,57)(48,58);
s3 := Sym(98)!(97,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
to this polytope