include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,12,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12,6,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 5
Schlafli Type : {3,12,6,2}
Number of vertices, edges, etc : 5, 40, 80, 10, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,12,3,2}*960, {3,6,6,2}*960
4-fold quotients : {3,3,6,2}*480, {3,6,3,2}*480
8-fold quotients : {3,3,3,2}*240
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7,20)( 8,19)( 9,21)(10,22)(11,13)(12,14)(15,37)(16,38)(17,35)
(18,36)(23,24)(27,32)(28,31)(29,34)(30,33)(39,40);;
s1 := ( 5, 6)( 7,10)( 8, 9)(11,22)(12,21)(13,20)(14,19)(17,18)(23,33)(24,34)
(25,32)(26,31)(29,30)(35,40)(36,39)(37,41)(38,42);;
s2 := ( 3,25)( 4,26)( 5,23)( 6,24)( 7,38)( 8,37)( 9,35)(10,36)(11,13)(12,14)
(15,19)(16,20)(17,21)(18,22)(27,30)(28,29)(31,34)(32,33)(41,42);;
s3 := ( 1, 2)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)(15,27)(16,28)(17,30)(18,29)
(19,22)(20,21)(23,40)(24,39)(25,41)(26,42)(31,38)(32,37)(33,35)(34,36);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(44)!( 5, 6)( 7,20)( 8,19)( 9,21)(10,22)(11,13)(12,14)(15,37)(16,38)
(17,35)(18,36)(23,24)(27,32)(28,31)(29,34)(30,33)(39,40);
s1 := Sym(44)!( 5, 6)( 7,10)( 8, 9)(11,22)(12,21)(13,20)(14,19)(17,18)(23,33)
(24,34)(25,32)(26,31)(29,30)(35,40)(36,39)(37,41)(38,42);
s2 := Sym(44)!( 3,25)( 4,26)( 5,23)( 6,24)( 7,38)( 8,37)( 9,35)(10,36)(11,13)
(12,14)(15,19)(16,20)(17,21)(18,22)(27,30)(28,29)(31,34)(32,33)(41,42);
s3 := Sym(44)!( 1, 2)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)(15,27)(16,28)(17,30)
(18,29)(19,22)(20,21)(23,40)(24,39)(25,41)(26,42)(31,38)(32,37)(33,35)(34,36);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2 >;
to this polytope