include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,2,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,2,9}*432
if this polytope has a name.
Group : SmallGroup(432,544)
Rank : 5
Schlafli Type : {2,6,2,9}
Number of vertices, edges, etc : 2, 6, 6, 9, 9
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,2,9,2} of size 864
{2,6,2,9,4} of size 1728
Vertex Figure Of :
{2,2,6,2,9} of size 864
{3,2,6,2,9} of size 1296
{4,2,6,2,9} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,2,9}*216
3-fold quotients : {2,2,2,9}*144, {2,6,2,3}*144
6-fold quotients : {2,3,2,3}*72
9-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,2,9}*864, {4,6,2,9}*864a, {2,6,2,18}*864
3-fold covers : {2,18,2,9}*1296, {2,6,6,9}*1296a, {2,6,2,27}*1296, {2,6,6,9}*1296b, {6,6,2,9}*1296a, {6,6,2,9}*1296b
4-fold covers : {4,12,2,9}*1728a, {2,24,2,9}*1728, {8,6,2,9}*1728, {2,12,2,18}*1728, {2,6,2,36}*1728, {2,6,4,18}*1728, {4,6,2,18}*1728a, {4,6,2,9}*1728, {2,6,4,9}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (5,6)(7,8);;
s2 := (3,7)(4,5)(6,8);;
s3 := (10,11)(12,13)(14,15)(16,17);;
s4 := ( 9,10)(11,12)(13,14)(15,16);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(17)!(1,2);
s1 := Sym(17)!(5,6)(7,8);
s2 := Sym(17)!(3,7)(4,5)(6,8);
s3 := Sym(17)!(10,11)(12,13)(14,15)(16,17);
s4 := Sym(17)!( 9,10)(11,12)(13,14)(15,16);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope