include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,6,6}*432b
if this polytope has a name.
Group : SmallGroup(432,759)
Rank : 5
Schlafli Type : {3,2,6,6}
Number of vertices, edges, etc : 3, 3, 6, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,6,6,2} of size 864
{3,2,6,6,4} of size 1728
{3,2,6,6,4} of size 1728
{3,2,6,6,4} of size 1728
Vertex Figure Of :
{2,3,2,6,6} of size 864
{3,3,2,6,6} of size 1728
{4,3,2,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,6,3}*216
3-fold quotients : {3,2,2,6}*144
6-fold quotients : {3,2,2,3}*72
9-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,6,12}*864b, {3,2,12,6}*864c, {6,2,6,6}*864b
3-fold covers : {3,2,6,18}*1296b, {9,2,6,6}*1296b, {3,2,6,6}*1296a, {3,2,6,6}*1296d, {3,6,6,6}*1296e
4-fold covers : {3,2,6,24}*1728b, {3,2,12,12}*1728b, {3,2,24,6}*1728c, {6,2,6,12}*1728b, {12,2,6,6}*1728b, {6,4,6,6}*1728c, {6,2,12,6}*1728c, {3,4,6,6}*1728b, {3,2,6,6}*1728a, {3,2,12,6}*1728b
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21);;
s3 := ( 4, 8)( 5,12)( 6,16)( 7,14)(10,20)(11,18)(15,17)(19,21);;
s4 := ( 4,10)( 5, 6)( 7,11)( 8,19)( 9,18)(12,15)(13,14)(16,21)(17,20);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!(2,3);
s1 := Sym(21)!(1,2);
s2 := Sym(21)!( 8, 9)(12,13)(14,15)(16,17)(18,19)(20,21);
s3 := Sym(21)!( 4, 8)( 5,12)( 6,16)( 7,14)(10,20)(11,18)(15,17)(19,21);
s4 := Sym(21)!( 4,10)( 5, 6)( 7,11)( 8,19)( 9,18)(12,15)(13,14)(16,21)(17,20);
poly := sub<Sym(21)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope