include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,6,6}*864b
if this polytope has a name.
Group : SmallGroup(864,4704)
Rank : 5
Schlafli Type : {6,2,6,6}
Number of vertices, edges, etc : 6, 6, 6, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,6,6,2} of size 1728
Vertex Figure Of :
{2,6,2,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,6,6}*432b, {6,2,6,3}*432
3-fold quotients : {2,2,6,6}*288b, {6,2,2,6}*288
4-fold quotients : {3,2,6,3}*216
6-fold quotients : {2,2,6,3}*144, {3,2,2,6}*144, {6,2,2,3}*144
9-fold quotients : {2,2,2,6}*96, {6,2,2,2}*96
12-fold quotients : {3,2,2,3}*72
18-fold quotients : {2,2,2,3}*48, {3,2,2,2}*48
27-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,2,6,12}*1728b, {12,2,6,6}*1728b, {6,4,6,6}*1728c, {6,2,12,6}*1728c
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := (11,12)(15,16)(17,18)(19,20)(21,22)(23,24);;
s3 := ( 7,11)( 8,15)( 9,19)(10,17)(13,23)(14,21)(18,20)(22,24);;
s4 := ( 7,13)( 8, 9)(10,14)(11,22)(12,21)(15,18)(16,17)(19,24)(20,23);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!(3,4)(5,6);
s1 := Sym(24)!(1,5)(2,3)(4,6);
s2 := Sym(24)!(11,12)(15,16)(17,18)(19,20)(21,22)(23,24);
s3 := Sym(24)!( 7,11)( 8,15)( 9,19)(10,17)(13,23)(14,21)(18,20)(22,24);
s4 := Sym(24)!( 7,13)( 8, 9)(10,14)(11,22)(12,21)(15,18)(16,17)(19,24)(20,23);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope