Polytope of Type {110,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {110,2}*440
if this polytope has a name.
Group : SmallGroup(440,50)
Rank : 3
Schlafli Type : {110,2}
Number of vertices, edges, etc : 110, 110, 2
Order of s0s1s2 : 110
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {110,2,2} of size 880
   {110,2,3} of size 1320
   {110,2,4} of size 1760
Vertex Figure Of :
   {2,110,2} of size 880
   {4,110,2} of size 1760
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {55,2}*220
   5-fold quotients : {22,2}*88
   10-fold quotients : {11,2}*44
   11-fold quotients : {10,2}*40
   22-fold quotients : {5,2}*20
   55-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {220,2}*880, {110,4}*880
   3-fold covers : {110,6}*1320, {330,2}*1320
   4-fold covers : {220,4}*1760, {440,2}*1760, {110,8}*1760
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 45)( 13, 55)( 14, 54)
( 15, 53)( 16, 52)( 17, 51)( 18, 50)( 19, 49)( 20, 48)( 21, 47)( 22, 46)
( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)
( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)( 74,104)
( 75,103)( 76,102)( 77,101)( 78, 89)( 79, 99)( 80, 98)( 81, 97)( 82, 96)
( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)( 88, 90);;
s1 := (  1, 68)(  2, 67)(  3, 77)(  4, 76)(  5, 75)(  6, 74)(  7, 73)(  8, 72)
(  9, 71)( 10, 70)( 11, 69)( 12, 57)( 13, 56)( 14, 66)( 15, 65)( 16, 64)
( 17, 63)( 18, 62)( 19, 61)( 20, 60)( 21, 59)( 22, 58)( 23,101)( 24,100)
( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)( 30,105)( 31,104)( 32,103)
( 33,102)( 34, 90)( 35, 89)( 36, 99)( 37, 98)( 38, 97)( 39, 96)( 40, 95)
( 41, 94)( 42, 93)( 43, 92)( 44, 91)( 45, 79)( 46, 78)( 47, 88)( 48, 87)
( 49, 86)( 50, 85)( 51, 84)( 52, 83)( 53, 82)( 54, 81)( 55, 80);;
s2 := (111,112);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 45)( 13, 55)
( 14, 54)( 15, 53)( 16, 52)( 17, 51)( 18, 50)( 19, 49)( 20, 48)( 21, 47)
( 22, 46)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)( 29, 39)
( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 57, 66)( 58, 65)( 59, 64)( 60, 63)
( 61, 62)( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)
( 74,104)( 75,103)( 76,102)( 77,101)( 78, 89)( 79, 99)( 80, 98)( 81, 97)
( 82, 96)( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)( 88, 90);
s1 := Sym(112)!(  1, 68)(  2, 67)(  3, 77)(  4, 76)(  5, 75)(  6, 74)(  7, 73)
(  8, 72)(  9, 71)( 10, 70)( 11, 69)( 12, 57)( 13, 56)( 14, 66)( 15, 65)
( 16, 64)( 17, 63)( 18, 62)( 19, 61)( 20, 60)( 21, 59)( 22, 58)( 23,101)
( 24,100)( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)( 30,105)( 31,104)
( 32,103)( 33,102)( 34, 90)( 35, 89)( 36, 99)( 37, 98)( 38, 97)( 39, 96)
( 40, 95)( 41, 94)( 42, 93)( 43, 92)( 44, 91)( 45, 79)( 46, 78)( 47, 88)
( 48, 87)( 49, 86)( 50, 85)( 51, 84)( 52, 83)( 53, 82)( 54, 81)( 55, 80);
s2 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope