include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,2,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,2,2,2}*448
if this polytope has a name.
Group : SmallGroup(448,1367)
Rank : 5
Schlafli Type : {28,2,2,2}
Number of vertices, edges, etc : 28, 28, 2, 2, 2
Order of s0s1s2s3s4 : 28
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{28,2,2,2,2} of size 896
{28,2,2,2,3} of size 1344
{28,2,2,2,4} of size 1792
Vertex Figure Of :
{2,28,2,2,2} of size 896
{4,28,2,2,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,2,2,2}*224
4-fold quotients : {7,2,2,2}*112
7-fold quotients : {4,2,2,2}*64
14-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {28,4,2,2}*896, {28,2,2,4}*896, {28,2,4,2}*896, {56,2,2,2}*896
3-fold covers : {28,2,2,6}*1344, {28,2,6,2}*1344, {28,6,2,2}*1344a, {84,2,2,2}*1344
4-fold covers : {28,4,4,2}*1792, {28,2,4,4}*1792, {28,4,2,4}*1792, {28,8,2,2}*1792a, {56,4,2,2}*1792a, {28,8,2,2}*1792b, {56,4,2,2}*1792b, {28,4,2,2}*1792, {28,2,2,8}*1792, {28,2,8,2}*1792, {56,2,2,4}*1792, {56,2,4,2}*1792, {112,2,2,2}*1792
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)(21,22)
(23,26)(24,25)(27,28);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)(16,19)
(18,27)(20,24)(22,25)(26,28);;
s2 := (29,30);;
s3 := (31,32);;
s4 := (33,34);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(34)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20)
(21,22)(23,26)(24,25)(27,28);
s1 := Sym(34)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,21)(12,23)(14,17)
(16,19)(18,27)(20,24)(22,25)(26,28);
s2 := Sym(34)!(29,30);
s3 := Sym(34)!(31,32);
s4 := Sym(34)!(33,34);
poly := sub<Sym(34)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope