include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {112,2,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {112,2,2,2}*1792
if this polytope has a name.
Group : SmallGroup(1792,1076043)
Rank : 5
Schlafli Type : {112,2,2,2}
Number of vertices, edges, etc : 112, 112, 2, 2, 2
Order of s0s1s2s3s4 : 112
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {56,2,2,2}*896
4-fold quotients : {28,2,2,2}*448
7-fold quotients : {16,2,2,2}*256
8-fold quotients : {14,2,2,2}*224
14-fold quotients : {8,2,2,2}*128
16-fold quotients : {7,2,2,2}*112
28-fold quotients : {4,2,2,2}*64
56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)( 31, 48)
( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)( 39, 54)
( 40, 53)( 41, 52)( 42, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)
( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)
( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);;
s1 := ( 1, 58)( 2, 57)( 3, 63)( 4, 62)( 5, 61)( 6, 60)( 7, 59)( 8, 65)
( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 79)( 16, 78)
( 17, 84)( 18, 83)( 19, 82)( 20, 81)( 21, 80)( 22, 72)( 23, 71)( 24, 77)
( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29,100)( 30, 99)( 31,105)( 32,104)
( 33,103)( 34,102)( 35,101)( 36,107)( 37,106)( 38,112)( 39,111)( 40,110)
( 41,109)( 42,108)( 43, 86)( 44, 85)( 45, 91)( 46, 90)( 47, 89)( 48, 88)
( 49, 87)( 50, 93)( 51, 92)( 52, 98)( 53, 97)( 54, 96)( 55, 95)( 56, 94);;
s2 := (113,114);;
s3 := (115,116);;
s4 := (117,118);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(118)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)
( 31, 48)( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)
( 39, 54)( 40, 53)( 41, 52)( 42, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)
( 61, 88)( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)
( 69, 94)( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)
( 77,107)( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);
s1 := Sym(118)!( 1, 58)( 2, 57)( 3, 63)( 4, 62)( 5, 61)( 6, 60)( 7, 59)
( 8, 65)( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 79)
( 16, 78)( 17, 84)( 18, 83)( 19, 82)( 20, 81)( 21, 80)( 22, 72)( 23, 71)
( 24, 77)( 25, 76)( 26, 75)( 27, 74)( 28, 73)( 29,100)( 30, 99)( 31,105)
( 32,104)( 33,103)( 34,102)( 35,101)( 36,107)( 37,106)( 38,112)( 39,111)
( 40,110)( 41,109)( 42,108)( 43, 86)( 44, 85)( 45, 91)( 46, 90)( 47, 89)
( 48, 88)( 49, 87)( 50, 93)( 51, 92)( 52, 98)( 53, 97)( 54, 96)( 55, 95)
( 56, 94);
s2 := Sym(118)!(113,114);
s3 := Sym(118)!(115,116);
s4 := Sym(118)!(117,118);
poly := sub<Sym(118)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope