include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,2,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,2,3,2}*480
if this polytope has a name.
Group : SmallGroup(480,1088)
Rank : 5
Schlafli Type : {20,2,3,2}
Number of vertices, edges, etc : 20, 20, 3, 3, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{20,2,3,2,2} of size 960
{20,2,3,2,3} of size 1440
{20,2,3,2,4} of size 1920
Vertex Figure Of :
{2,20,2,3,2} of size 960
{4,20,2,3,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,2,3,2}*240
4-fold quotients : {5,2,3,2}*120
5-fold quotients : {4,2,3,2}*96
10-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {40,2,3,2}*960, {20,2,6,2}*960
3-fold covers : {20,2,9,2}*1440, {20,2,3,6}*1440, {20,6,3,2}*1440, {60,2,3,2}*1440
4-fold covers : {80,2,3,2}*1920, {20,4,6,2}*1920, {20,2,6,4}*1920a, {20,2,12,2}*1920, {40,2,6,2}*1920, {20,2,3,4}*1920, {20,4,3,2}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)(18,20);;
s2 := (22,23);;
s3 := (21,22);;
s4 := (24,25);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(25)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);
s1 := Sym(25)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)
(18,20);
s2 := Sym(25)!(22,23);
s3 := Sym(25)!(21,22);
s4 := Sym(25)!(24,25);
poly := sub<Sym(25)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope