include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,4,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4,6,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,205034)
Rank : 5
Schlafli Type : {20,4,6,2}
Number of vertices, edges, etc : 20, 40, 12, 6, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,2,6,2}*960, {10,4,6,2}*960
3-fold quotients : {20,4,2,2}*640
4-fold quotients : {20,2,3,2}*480, {10,2,6,2}*480
5-fold quotients : {4,4,6,2}*384
6-fold quotients : {20,2,2,2}*320, {10,4,2,2}*320
8-fold quotients : {5,2,6,2}*240, {10,2,3,2}*240
10-fold quotients : {2,4,6,2}*192a, {4,2,6,2}*192
12-fold quotients : {10,2,2,2}*160
15-fold quotients : {4,4,2,2}*128
16-fold quotients : {5,2,3,2}*120
20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
24-fold quotients : {5,2,2,2}*80
30-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
40-fold quotients : {2,2,3,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 96)( 67,100)( 68, 99)
( 69, 98)( 70, 97)( 71,101)( 72,105)( 73,104)( 74,103)( 75,102)( 76,106)
( 77,110)( 78,109)( 79,108)( 80,107)( 81,111)( 82,115)( 83,114)( 84,113)
( 85,112)( 86,116)( 87,120)( 88,119)( 89,118)( 90,117);;
s1 := ( 1, 62)( 2, 61)( 3, 65)( 4, 64)( 5, 63)( 6, 67)( 7, 66)( 8, 70)
( 9, 69)( 10, 68)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)( 16, 77)
( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 82)( 22, 81)( 23, 85)( 24, 84)
( 25, 83)( 26, 87)( 27, 86)( 28, 90)( 29, 89)( 30, 88)( 31, 92)( 32, 91)
( 33, 95)( 34, 94)( 35, 93)( 36, 97)( 37, 96)( 38,100)( 39, 99)( 40, 98)
( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46,107)( 47,106)( 48,110)
( 49,109)( 50,108)( 51,112)( 52,111)( 53,115)( 54,114)( 55,113)( 56,117)
( 57,116)( 58,120)( 59,119)( 60,118);;
s2 := ( 6, 11)( 7, 12)( 8, 13)( 9, 14)( 10, 15)( 21, 26)( 22, 27)( 23, 28)
( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 51, 56)
( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 61, 76)( 62, 77)( 63, 78)( 64, 79)
( 65, 80)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)( 71, 81)( 72, 82)
( 73, 83)( 74, 84)( 75, 85)( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)
( 96,116)( 97,117)( 98,118)( 99,119)(100,120)(101,111)(102,112)(103,113)
(104,114)(105,115);;
s3 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)( 64, 69)
( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)(110,115);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(122)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)( 66, 96)( 67,100)
( 68, 99)( 69, 98)( 70, 97)( 71,101)( 72,105)( 73,104)( 74,103)( 75,102)
( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)( 81,111)( 82,115)( 83,114)
( 84,113)( 85,112)( 86,116)( 87,120)( 88,119)( 89,118)( 90,117);
s1 := Sym(122)!( 1, 62)( 2, 61)( 3, 65)( 4, 64)( 5, 63)( 6, 67)( 7, 66)
( 8, 70)( 9, 69)( 10, 68)( 11, 72)( 12, 71)( 13, 75)( 14, 74)( 15, 73)
( 16, 77)( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 82)( 22, 81)( 23, 85)
( 24, 84)( 25, 83)( 26, 87)( 27, 86)( 28, 90)( 29, 89)( 30, 88)( 31, 92)
( 32, 91)( 33, 95)( 34, 94)( 35, 93)( 36, 97)( 37, 96)( 38,100)( 39, 99)
( 40, 98)( 41,102)( 42,101)( 43,105)( 44,104)( 45,103)( 46,107)( 47,106)
( 48,110)( 49,109)( 50,108)( 51,112)( 52,111)( 53,115)( 54,114)( 55,113)
( 56,117)( 57,116)( 58,120)( 59,119)( 60,118);
s2 := Sym(122)!( 6, 11)( 7, 12)( 8, 13)( 9, 14)( 10, 15)( 21, 26)( 22, 27)
( 23, 28)( 24, 29)( 25, 30)( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)
( 51, 56)( 52, 57)( 53, 58)( 54, 59)( 55, 60)( 61, 76)( 62, 77)( 63, 78)
( 64, 79)( 65, 80)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)( 71, 81)
( 72, 82)( 73, 83)( 74, 84)( 75, 85)( 91,106)( 92,107)( 93,108)( 94,109)
( 95,110)( 96,116)( 97,117)( 98,118)( 99,119)(100,120)(101,111)(102,112)
(103,113)(104,114)(105,115);
s3 := Sym(122)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)
( 64, 69)( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)
(110,115);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope