include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,15}*480
if this polytope has a name.
Group : SmallGroup(480,1193)
Rank : 4
Schlafli Type : {2,6,15}
Number of vertices, edges, etc : 2, 8, 60, 20
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,15,2} of size 960
Vertex Figure Of :
{2,2,6,15} of size 960
{3,2,6,15} of size 1440
{4,2,6,15} of size 1920
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,6,3}*96
10-fold quotients : {2,3,3}*48
12-fold quotients : {2,2,5}*40
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,15}*960, {4,6,15}*960, {2,6,30}*960
3-fold covers : {6,6,15}*1440, {2,6,15}*1440e
4-fold covers : {2,6,15}*1920, {4,6,15}*1920, {8,6,15}*1920, {4,12,15}*1920, {2,6,60}*1920a, {2,12,30}*1920a, {2,6,30}*1920, {2,6,60}*1920b, {4,6,30}*1920, {2,12,30}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 9,10)(13,14)(17,18)(21,22);;
s2 := ( 4, 5)( 7,19)( 8,21)( 9,20)(10,22)(11,15)(12,17)(13,16)(14,18);;
s3 := ( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,20)(12,19)(13,21)(14,22)(15,16);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(22)!(1,2);
s1 := Sym(22)!( 5, 6)( 9,10)(13,14)(17,18)(21,22);
s2 := Sym(22)!( 4, 5)( 7,19)( 8,21)( 9,20)(10,22)(11,15)(12,17)(13,16)(14,18);
s3 := Sym(22)!( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,20)(12,19)(13,21)(14,22)(15,16);
poly := sub<Sym(22)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3 >;
to this polytope