include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,6}*480a
if this polytope has a name.
Group : SmallGroup(480,948)
Rank : 3
Schlafli Type : {10,6}
Number of vertices, edges, etc : 40, 120, 24
Order of s0s1s2 : 8
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{10,6,2} of size 960
{10,6,4} of size 1920
Vertex Figure Of :
{2,10,6} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6}*240a
4-fold quotients : {5,6}*120a
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,6}*960a
3-fold covers : {30,6}*1440a, {30,6}*1440b
4-fold covers : {10,12}*1920b, {20,6}*1920c
Permutation Representation (GAP) :
s0 := ( 3,17)( 4,13)( 7,16)( 8,15)( 9,26)(10,14)(11,39)(12,28)(18,33)(19,34)
(20,30)(21,37)(22,38)(23,29)(24,40)(25,27)(31,36)(32,35);;
s1 := ( 1, 9)( 2,10)( 3, 5)( 4, 6)( 7,20)( 8,23)(11,26)(12,14)(13,25)(15,21)
(16,22)(17,24)(18,38)(19,29)(27,39)(28,40)(30,36)(35,37);;
s2 := ( 2, 5)( 3,13)( 4,17)( 7, 8)( 9,14)(10,26)(11,38)(12,37)(15,16)(18,36)
(20,27)(21,28)(22,39)(23,40)(24,29)(25,30)(31,33);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!( 3,17)( 4,13)( 7,16)( 8,15)( 9,26)(10,14)(11,39)(12,28)(18,33)
(19,34)(20,30)(21,37)(22,38)(23,29)(24,40)(25,27)(31,36)(32,35);
s1 := Sym(40)!( 1, 9)( 2,10)( 3, 5)( 4, 6)( 7,20)( 8,23)(11,26)(12,14)(13,25)
(15,21)(16,22)(17,24)(18,38)(19,29)(27,39)(28,40)(30,36)(35,37);
s2 := Sym(40)!( 2, 5)( 3,13)( 4,17)( 7, 8)( 9,14)(10,26)(11,38)(12,37)(15,16)
(18,36)(20,27)(21,28)(22,39)(23,40)(24,29)(25,30)(31,33);
poly := sub<Sym(40)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope