include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6}*480b
if this polytope has a name.
Group : SmallGroup(480,948)
Rank : 3
Schlafli Type : {8,6}
Number of vertices, edges, etc : 40, 120, 30
Order of s0s1s2 : 10
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{8,6,2} of size 960
Vertex Figure Of :
{2,8,6} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6}*240c
4-fold quotients : {4,6}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,6}*960a
3-fold covers : {8,6}*1440a, {24,6}*1440a
4-fold covers : {8,12}*1920a, {8,6}*1920b, {8,12}*1920d
Permutation Representation (GAP) :
s0 := ( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)(14,36)
(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);;
s1 := ( 3,15)( 4, 7)( 8,10)( 9,16)(11,19)(12,36)(13,26)(14,17)(18,24)(20,32)
(21,33)(22,34)(23,31)(25,35)(27,30)(28,29)(37,40)(38,39);;
s2 := ( 1, 6)( 3, 4)( 7,17)( 8,26)( 9,10)(11,25)(13,15)(14,16)(18,40)(19,27)
(20,22)(28,36)(29,31)(30,34)(32,38)(33,37)(35,39);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!( 1,11)( 2,24)( 3, 9)( 4,10)( 5,12)( 6,25)( 7,40)( 8,39)(13,19)
(14,36)(15,27)(16,28)(17,18)(20,22)(26,35)(29,38)(30,37)(31,32)(33,34);
s1 := Sym(40)!( 3,15)( 4, 7)( 8,10)( 9,16)(11,19)(12,36)(13,26)(14,17)(18,24)
(20,32)(21,33)(22,34)(23,31)(25,35)(27,30)(28,29)(37,40)(38,39);
s2 := Sym(40)!( 1, 6)( 3, 4)( 7,17)( 8,26)( 9,10)(11,25)(13,15)(14,16)(18,40)
(19,27)(20,22)(28,36)(29,31)(30,34)(32,38)(33,37)(35,39);
poly := sub<Sym(40)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s0 >;
References : None.
to this polytope