include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4}*480a
if this polytope has a name.
Group : SmallGroup(480,951)
Rank : 3
Schlafli Type : {12,4}
Number of vertices, edges, etc : 60, 120, 20
Order of s0s1s2 : 10
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{12,4,2} of size 960
Vertex Figure Of :
{2,12,4} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4}*240b
4-fold quotients : {6,4}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,4}*960b
3-fold covers : {12,12}*1440c
4-fold covers : {12,4}*1920a, {12,8}*1920a, {12,8}*1920b, {24,4}*1920c, {24,4}*1920d
Permutation Representation (GAP) :
s0 := (3,4)(7,9);;
s1 := (1,3)(2,4)(5,6)(8,9);;
s2 := (3,4)(6,8);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(3,4)(7,9);
s1 := Sym(9)!(1,3)(2,4)(5,6)(8,9);
s2 := Sym(9)!(3,4)(6,8);
poly := sub<Sym(9)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope