include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,8}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240798)
Rank : 3
Schlafli Type : {12,8}
Number of vertices, edges, etc : 120, 480, 80
Order of s0s1s2 : 10
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*960a, {12,4}*960b
4-fold quotients : {6,8}*480a, {6,8}*480b, {12,4}*480a, {12,4}*480b, {6,4}*480
8-fold quotients : {6,4}*240a, {6,4}*240b, {6,4}*240c
16-fold quotients : {6,4}*120
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,25)( 6,26)( 7,17)( 8,18)( 9,22)(10,21)(11,13)(12,14)
(15,29)(16,30)(19,36)(20,35)(23,34)(24,33)(27,39)(28,40)(31,32)(41,44)(42,43)
(45,47)(46,48)(49,70)(50,69)(51,62)(52,61)(53,65)(54,66)(55,58)(56,57)(59,74)
(60,73)(63,79)(64,80)(67,77)(68,78)(71,84)(72,83)(81,82)(85,87)(86,88);;
s1 := ( 3, 4)( 7,36)( 8,35)( 9,40)(10,39)(13,31)(14,32)(15,16)(17,23)(18,24)
(19,41)(20,42)(21,44)(22,43)(25,38)(26,37)(27,34)(28,33)(29,30)(47,48)(51,80)
(52,79)(53,84)(54,83)(57,75)(58,76)(59,60)(61,67)(62,68)(63,85)(64,86)(65,88)
(66,87)(69,82)(70,81)(71,78)(72,77)(73,74);;
s2 := ( 1,47)( 2,48)( 3,45)( 4,46)( 5,67)( 6,68)( 7,60)( 8,59)( 9,53)(10,54)
(11,80)(12,79)(13,64)(14,63)(15,52)(16,51)(17,73)(18,74)(19,58)(20,57)(21,66)
(22,65)(23,49)(24,50)(25,77)(26,78)(27,86)(28,85)(29,61)(30,62)(31,82)(32,81)
(33,69)(34,70)(35,56)(36,55)(37,76)(38,75)(39,88)(40,87)(41,72)(42,71)(43,84)
(44,83);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(88)!( 1, 3)( 2, 4)( 5,25)( 6,26)( 7,17)( 8,18)( 9,22)(10,21)(11,13)
(12,14)(15,29)(16,30)(19,36)(20,35)(23,34)(24,33)(27,39)(28,40)(31,32)(41,44)
(42,43)(45,47)(46,48)(49,70)(50,69)(51,62)(52,61)(53,65)(54,66)(55,58)(56,57)
(59,74)(60,73)(63,79)(64,80)(67,77)(68,78)(71,84)(72,83)(81,82)(85,87)(86,88);
s1 := Sym(88)!( 3, 4)( 7,36)( 8,35)( 9,40)(10,39)(13,31)(14,32)(15,16)(17,23)
(18,24)(19,41)(20,42)(21,44)(22,43)(25,38)(26,37)(27,34)(28,33)(29,30)(47,48)
(51,80)(52,79)(53,84)(54,83)(57,75)(58,76)(59,60)(61,67)(62,68)(63,85)(64,86)
(65,88)(66,87)(69,82)(70,81)(71,78)(72,77)(73,74);
s2 := Sym(88)!( 1,47)( 2,48)( 3,45)( 4,46)( 5,67)( 6,68)( 7,60)( 8,59)( 9,53)
(10,54)(11,80)(12,79)(13,64)(14,63)(15,52)(16,51)(17,73)(18,74)(19,58)(20,57)
(21,66)(22,65)(23,49)(24,50)(25,77)(26,78)(27,86)(28,85)(29,61)(30,62)(31,82)
(32,81)(33,69)(34,70)(35,56)(36,55)(37,76)(38,75)(39,88)(40,87)(41,72)(42,71)
(43,84)(44,83);
poly := sub<Sym(88)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope