include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,3}*504
Also Known As : {9,3}7. if this polytope has another name.
Group : SmallGroup(504,156)
Rank : 3
Schlafli Type : {9,3}
Number of vertices, edges, etc : 84, 126, 28
Order of s0s1s2 : 7
Order of s0s1s2s1 : 9
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{9,3,2} of size 1008
Vertex Figure Of :
{2,9,3} of size 1008
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,3}*1008, {9,6}*1008a, {9,6}*1008b, {18,3}*1008a, {18,3}*1008b
Permutation Representation (GAP) :
s0 := (2,3)(4,6)(5,8)(7,9);;
s1 := (1,2)(3,4)(6,7)(8,9);;
s2 := (2,5)(3,8)(4,7)(6,9);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,6)(5,8)(7,9);
s1 := Sym(9)!(1,2)(3,4)(6,7)(8,9);
s2 := Sym(9)!(2,5)(3,8)(4,7)(6,9);
poly := sub<Sym(9)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope