include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,8}*512b
if this polytope has a name.
Group : SmallGroup(512,391345)
Rank : 4
Schlafli Type : {2,8,8}
Number of vertices, edges, etc : 2, 16, 64, 16
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,8}*256b, {2,8,4}*256b
4-fold quotients : {2,4,4}*128
8-fold quotients : {2,4,4}*64
16-fold quotients : {2,2,4}*32, {2,4,2}*32
32-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 71)( 8, 72)( 9, 73)( 10, 74)
( 11, 78)( 12, 77)( 13, 76)( 14, 75)( 15, 82)( 16, 81)( 17, 80)( 18, 79)
( 19, 87)( 20, 88)( 21, 89)( 22, 90)( 23, 83)( 24, 84)( 25, 85)( 26, 86)
( 27, 98)( 28, 97)( 29, 96)( 30, 95)( 31, 94)( 32, 93)( 33, 92)( 34, 91)
( 35, 99)( 36,100)( 37,101)( 38,102)( 39,103)( 40,104)( 41,105)( 42,106)
( 43,110)( 44,109)( 45,108)( 46,107)( 47,114)( 48,113)( 49,112)( 50,111)
( 51,119)( 52,120)( 53,121)( 54,122)( 55,115)( 56,116)( 57,117)( 58,118)
( 59,130)( 60,129)( 61,128)( 62,127)( 63,126)( 64,125)( 65,124)( 66,123);;
s2 := ( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 19, 23)( 20, 24)( 21, 26)( 22, 25)
( 27, 31)( 28, 32)( 29, 34)( 30, 33)( 35, 43)( 36, 44)( 37, 46)( 38, 45)
( 39, 47)( 40, 48)( 41, 50)( 42, 49)( 51, 64)( 52, 63)( 53, 65)( 54, 66)
( 55, 60)( 56, 59)( 57, 61)( 58, 62)( 67, 83)( 68, 84)( 69, 86)( 70, 85)
( 71, 87)( 72, 88)( 73, 90)( 74, 89)( 75, 91)( 76, 92)( 77, 94)( 78, 93)
( 79, 95)( 80, 96)( 81, 98)( 82, 97)( 99,125)(100,126)(101,124)(102,123)
(103,129)(104,130)(105,128)(106,127)(107,117)(108,118)(109,116)(110,115)
(111,121)(112,122)(113,120)(114,119);;
s3 := ( 3, 99)( 4,100)( 5,101)( 6,102)( 7,103)( 8,104)( 9,105)( 10,106)
( 11,110)( 12,109)( 13,108)( 14,107)( 15,114)( 16,113)( 17,112)( 18,111)
( 19,121)( 20,122)( 21,119)( 22,120)( 23,117)( 24,118)( 25,115)( 26,116)
( 27,128)( 28,127)( 29,130)( 30,129)( 31,124)( 32,123)( 33,126)( 34,125)
( 35, 67)( 36, 68)( 37, 69)( 38, 70)( 39, 71)( 40, 72)( 41, 73)( 42, 74)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 82)( 48, 81)( 49, 80)( 50, 79)
( 51, 89)( 52, 90)( 53, 87)( 54, 88)( 55, 85)( 56, 86)( 57, 83)( 58, 84)
( 59, 96)( 60, 95)( 61, 98)( 62, 97)( 63, 92)( 64, 91)( 65, 94)( 66, 93);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(130)!(1,2);
s1 := Sym(130)!( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 71)( 8, 72)( 9, 73)
( 10, 74)( 11, 78)( 12, 77)( 13, 76)( 14, 75)( 15, 82)( 16, 81)( 17, 80)
( 18, 79)( 19, 87)( 20, 88)( 21, 89)( 22, 90)( 23, 83)( 24, 84)( 25, 85)
( 26, 86)( 27, 98)( 28, 97)( 29, 96)( 30, 95)( 31, 94)( 32, 93)( 33, 92)
( 34, 91)( 35, 99)( 36,100)( 37,101)( 38,102)( 39,103)( 40,104)( 41,105)
( 42,106)( 43,110)( 44,109)( 45,108)( 46,107)( 47,114)( 48,113)( 49,112)
( 50,111)( 51,119)( 52,120)( 53,121)( 54,122)( 55,115)( 56,116)( 57,117)
( 58,118)( 59,130)( 60,129)( 61,128)( 62,127)( 63,126)( 64,125)( 65,124)
( 66,123);
s2 := Sym(130)!( 5, 6)( 9, 10)( 13, 14)( 17, 18)( 19, 23)( 20, 24)( 21, 26)
( 22, 25)( 27, 31)( 28, 32)( 29, 34)( 30, 33)( 35, 43)( 36, 44)( 37, 46)
( 38, 45)( 39, 47)( 40, 48)( 41, 50)( 42, 49)( 51, 64)( 52, 63)( 53, 65)
( 54, 66)( 55, 60)( 56, 59)( 57, 61)( 58, 62)( 67, 83)( 68, 84)( 69, 86)
( 70, 85)( 71, 87)( 72, 88)( 73, 90)( 74, 89)( 75, 91)( 76, 92)( 77, 94)
( 78, 93)( 79, 95)( 80, 96)( 81, 98)( 82, 97)( 99,125)(100,126)(101,124)
(102,123)(103,129)(104,130)(105,128)(106,127)(107,117)(108,118)(109,116)
(110,115)(111,121)(112,122)(113,120)(114,119);
s3 := Sym(130)!( 3, 99)( 4,100)( 5,101)( 6,102)( 7,103)( 8,104)( 9,105)
( 10,106)( 11,110)( 12,109)( 13,108)( 14,107)( 15,114)( 16,113)( 17,112)
( 18,111)( 19,121)( 20,122)( 21,119)( 22,120)( 23,117)( 24,118)( 25,115)
( 26,116)( 27,128)( 28,127)( 29,130)( 30,129)( 31,124)( 32,123)( 33,126)
( 34,125)( 35, 67)( 36, 68)( 37, 69)( 38, 70)( 39, 71)( 40, 72)( 41, 73)
( 42, 74)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 82)( 48, 81)( 49, 80)
( 50, 79)( 51, 89)( 52, 90)( 53, 87)( 54, 88)( 55, 85)( 56, 86)( 57, 83)
( 58, 84)( 59, 96)( 60, 95)( 61, 98)( 62, 97)( 63, 92)( 64, 91)( 65, 94)
( 66, 93);
poly := sub<Sym(130)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >;
to this polytope