include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,4,2}*512d
if this polytope has a name.
Group : SmallGroup(512,6344656)
Rank : 5
Schlafli Type : {4,8,4,2}
Number of vertices, edges, etc : 4, 16, 16, 4, 2
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,4,2}*256
4-fold quotients : {2,4,4,2}*128, {4,4,2,2}*128, {4,2,4,2}*128
8-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64, {4,2,2,2}*64
16-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7, 8)(13,14)(15,16);;
s1 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15);;
s2 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15);;
s3 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(18)!( 5, 6)( 7, 8)(13,14)(15,16);
s1 := Sym(18)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15);
s2 := Sym(18)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15);
s3 := Sym(18)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15);
s4 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
to this polytope