include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,8}*512a
if this polytope has a name.
Group : SmallGroup(512,72873)
Rank : 4
Schlafli Type : {2,8,8}
Number of vertices, edges, etc : 2, 16, 64, 16
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,8}*256a, {2,8,4}*256a, {2,8,8}*256a, {2,8,8}*256b, {2,8,8}*256c, {2,8,8}*256d
4-fold quotients : {2,4,8}*128a, {2,8,4}*128a, {2,4,8}*128b, {2,8,4}*128b, {2,4,4}*128
8-fold quotients : {2,4,4}*64, {2,2,8}*64, {2,8,2}*64
16-fold quotients : {2,2,4}*32, {2,4,2}*32
32-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 71)( 8, 72)( 9, 73)( 10, 74)
( 11, 77)( 12, 78)( 13, 75)( 14, 76)( 15, 81)( 16, 82)( 17, 79)( 18, 80)
( 19, 87)( 20, 88)( 21, 89)( 22, 90)( 23, 83)( 24, 84)( 25, 85)( 26, 86)
( 27, 97)( 28, 98)( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 91)( 34, 92)
( 35, 99)( 36,100)( 37,101)( 38,102)( 39,103)( 40,104)( 41,105)( 42,106)
( 43,109)( 44,110)( 45,107)( 46,108)( 47,113)( 48,114)( 49,111)( 50,112)
( 51,119)( 52,120)( 53,121)( 54,122)( 55,115)( 56,116)( 57,117)( 58,118)
( 59,129)( 60,130)( 61,127)( 62,128)( 63,125)( 64,126)( 65,123)( 66,124);;
s2 := ( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 23)( 20, 24)( 21, 25)( 22, 26)
( 27, 32)( 28, 31)( 29, 34)( 30, 33)( 35, 43)( 36, 44)( 37, 45)( 38, 46)
( 39, 47)( 40, 48)( 41, 49)( 42, 50)( 51, 63)( 52, 64)( 53, 65)( 54, 66)
( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 83)( 68, 84)( 69, 85)( 70, 86)
( 71, 87)( 72, 88)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 94)( 78, 93)
( 79, 96)( 80, 95)( 81, 98)( 82, 97)( 99,125)(100,126)(101,123)(102,124)
(103,129)(104,130)(105,127)(106,128)(107,117)(108,118)(109,115)(110,116)
(111,121)(112,122)(113,119)(114,120);;
s3 := ( 3, 35)( 4, 36)( 5, 37)( 6, 38)( 7, 39)( 8, 40)( 9, 41)( 10, 42)
( 11, 44)( 12, 43)( 13, 46)( 14, 45)( 15, 48)( 16, 47)( 17, 50)( 18, 49)
( 19, 53)( 20, 54)( 21, 51)( 22, 52)( 23, 57)( 24, 58)( 25, 55)( 26, 56)
( 27, 62)( 28, 61)( 29, 60)( 30, 59)( 31, 66)( 32, 65)( 33, 64)( 34, 63)
( 67, 99)( 68,100)( 69,101)( 70,102)( 71,103)( 72,104)( 73,105)( 74,106)
( 75,108)( 76,107)( 77,110)( 78,109)( 79,112)( 80,111)( 81,114)( 82,113)
( 83,117)( 84,118)( 85,115)( 86,116)( 87,121)( 88,122)( 89,119)( 90,120)
( 91,126)( 92,125)( 93,124)( 94,123)( 95,130)( 96,129)( 97,128)( 98,127);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(130)!(1,2);
s1 := Sym(130)!( 3, 67)( 4, 68)( 5, 69)( 6, 70)( 7, 71)( 8, 72)( 9, 73)
( 10, 74)( 11, 77)( 12, 78)( 13, 75)( 14, 76)( 15, 81)( 16, 82)( 17, 79)
( 18, 80)( 19, 87)( 20, 88)( 21, 89)( 22, 90)( 23, 83)( 24, 84)( 25, 85)
( 26, 86)( 27, 97)( 28, 98)( 29, 95)( 30, 96)( 31, 93)( 32, 94)( 33, 91)
( 34, 92)( 35, 99)( 36,100)( 37,101)( 38,102)( 39,103)( 40,104)( 41,105)
( 42,106)( 43,109)( 44,110)( 45,107)( 46,108)( 47,113)( 48,114)( 49,111)
( 50,112)( 51,119)( 52,120)( 53,121)( 54,122)( 55,115)( 56,116)( 57,117)
( 58,118)( 59,129)( 60,130)( 61,127)( 62,128)( 63,125)( 64,126)( 65,123)
( 66,124);
s2 := Sym(130)!( 11, 12)( 13, 14)( 15, 16)( 17, 18)( 19, 23)( 20, 24)( 21, 25)
( 22, 26)( 27, 32)( 28, 31)( 29, 34)( 30, 33)( 35, 43)( 36, 44)( 37, 45)
( 38, 46)( 39, 47)( 40, 48)( 41, 49)( 42, 50)( 51, 63)( 52, 64)( 53, 65)
( 54, 66)( 55, 59)( 56, 60)( 57, 61)( 58, 62)( 67, 83)( 68, 84)( 69, 85)
( 70, 86)( 71, 87)( 72, 88)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 94)
( 78, 93)( 79, 96)( 80, 95)( 81, 98)( 82, 97)( 99,125)(100,126)(101,123)
(102,124)(103,129)(104,130)(105,127)(106,128)(107,117)(108,118)(109,115)
(110,116)(111,121)(112,122)(113,119)(114,120);
s3 := Sym(130)!( 3, 35)( 4, 36)( 5, 37)( 6, 38)( 7, 39)( 8, 40)( 9, 41)
( 10, 42)( 11, 44)( 12, 43)( 13, 46)( 14, 45)( 15, 48)( 16, 47)( 17, 50)
( 18, 49)( 19, 53)( 20, 54)( 21, 51)( 22, 52)( 23, 57)( 24, 58)( 25, 55)
( 26, 56)( 27, 62)( 28, 61)( 29, 60)( 30, 59)( 31, 66)( 32, 65)( 33, 64)
( 34, 63)( 67, 99)( 68,100)( 69,101)( 70,102)( 71,103)( 72,104)( 73,105)
( 74,106)( 75,108)( 76,107)( 77,110)( 78,109)( 79,112)( 80,111)( 81,114)
( 82,113)( 83,117)( 84,118)( 85,115)( 86,116)( 87,121)( 88,122)( 89,119)
( 90,120)( 91,126)( 92,125)( 93,124)( 94,123)( 95,130)( 96,129)( 97,128)
( 98,127);
poly := sub<Sym(130)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope