include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,13}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,13}*520
if this polytope has a name.
Group : SmallGroup(520,45)
Rank : 4
Schlafli Type : {10,2,13}
Number of vertices, edges, etc : 10, 10, 13, 13
Order of s0s1s2s3 : 130
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,2,13,2} of size 1040
Vertex Figure Of :
{2,10,2,13} of size 1040
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,13}*260
5-fold quotients : {2,2,13}*104
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,2,13}*1040, {10,2,26}*1040
3-fold covers : {30,2,13}*1560, {10,2,39}*1560
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(16,17)(18,19)(20,21)(22,23);;
s3 := (11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(23)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(23)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(23)!(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);
s3 := Sym(23)!(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);
poly := sub<Sym(23)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope