Polytope of Type {2,13}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,13}*52
if this polytope has a name.
Group : SmallGroup(52,4)
Rank : 3
Schlafli Type : {2,13}
Number of vertices, edges, etc : 2, 13, 13
Order of s0s1s2 : 26
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,13,2} of size 104
   {2,13,26} of size 1352
Vertex Figure Of :
   {2,2,13} of size 104
   {3,2,13} of size 156
   {4,2,13} of size 208
   {5,2,13} of size 260
   {6,2,13} of size 312
   {7,2,13} of size 364
   {8,2,13} of size 416
   {9,2,13} of size 468
   {10,2,13} of size 520
   {11,2,13} of size 572
   {12,2,13} of size 624
   {13,2,13} of size 676
   {14,2,13} of size 728
   {15,2,13} of size 780
   {16,2,13} of size 832
   {17,2,13} of size 884
   {18,2,13} of size 936
   {19,2,13} of size 988
   {20,2,13} of size 1040
   {21,2,13} of size 1092
   {22,2,13} of size 1144
   {23,2,13} of size 1196
   {24,2,13} of size 1248
   {25,2,13} of size 1300
   {26,2,13} of size 1352
   {27,2,13} of size 1404
   {28,2,13} of size 1456
   {29,2,13} of size 1508
   {30,2,13} of size 1560
   {31,2,13} of size 1612
   {32,2,13} of size 1664
   {33,2,13} of size 1716
   {34,2,13} of size 1768
   {35,2,13} of size 1820
   {36,2,13} of size 1872
   {37,2,13} of size 1924
   {38,2,13} of size 1976
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,26}*104
   3-fold covers : {2,39}*156
   4-fold covers : {2,52}*208, {4,26}*208
   5-fold covers : {2,65}*260
   6-fold covers : {6,26}*312, {2,78}*312
   7-fold covers : {2,91}*364
   8-fold covers : {4,52}*416, {2,104}*416, {8,26}*416
   9-fold covers : {2,117}*468, {6,39}*468
   10-fold covers : {10,26}*520, {2,130}*520
   11-fold covers : {2,143}*572
   12-fold covers : {12,26}*624, {6,52}*624a, {2,156}*624, {4,78}*624a, {6,39}*624, {4,39}*624
   13-fold covers : {2,169}*676, {26,13}*676
   14-fold covers : {14,26}*728, {2,182}*728
   15-fold covers : {2,195}*780
   16-fold covers : {4,104}*832a, {4,52}*832, {4,104}*832b, {8,52}*832a, {8,52}*832b, {2,208}*832, {16,26}*832
   17-fold covers : {2,221}*884
   18-fold covers : {18,26}*936, {2,234}*936, {6,78}*936a, {6,78}*936b, {6,78}*936c
   19-fold covers : {2,247}*988
   20-fold covers : {20,26}*1040, {10,52}*1040, {2,260}*1040, {4,130}*1040
   21-fold covers : {2,273}*1092
   22-fold covers : {22,26}*1144, {2,286}*1144
   23-fold covers : {2,299}*1196
   24-fold covers : {24,26}*1248, {6,104}*1248, {12,52}*1248, {4,156}*1248a, {2,312}*1248, {8,78}*1248, {12,39}*1248, {8,39}*1248, {6,52}*1248, {6,78}*1248, {4,78}*1248
   25-fold covers : {2,325}*1300, {10,65}*1300
   26-fold covers : {2,338}*1352, {26,26}*1352a, {26,26}*1352b
   27-fold covers : {2,351}*1404, {6,117}*1404, {6,39}*1404
   28-fold covers : {28,26}*1456, {14,52}*1456, {2,364}*1456, {4,182}*1456
   29-fold covers : {2,377}*1508
   30-fold covers : {30,26}*1560, {10,78}*1560, {6,130}*1560, {2,390}*1560
   31-fold covers : {2,403}*1612
   32-fold covers : {8,52}*1664a, {4,104}*1664a, {8,104}*1664a, {8,104}*1664b, {8,104}*1664c, {8,104}*1664d, {16,52}*1664a, {4,208}*1664a, {16,52}*1664b, {4,208}*1664b, {4,52}*1664, {4,104}*1664b, {8,52}*1664b, {32,26}*1664, {2,416}*1664
   33-fold covers : {2,429}*1716
   34-fold covers : {34,26}*1768, {2,442}*1768
   35-fold covers : {2,455}*1820
   36-fold covers : {36,26}*1872, {18,52}*1872a, {2,468}*1872, {4,234}*1872a, {4,117}*1872, {6,156}*1872a, {12,78}*1872a, {12,78}*1872b, {6,156}*1872b, {6,156}*1872c, {12,78}*1872c, {4,52}*1872, {4,78}*1872, {12,39}*1872, {6,39}*1872, {6,52}*1872
   37-fold covers : {2,481}*1924
   38-fold covers : {38,26}*1976, {2,494}*1976
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s2 := Sym(15)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
poly := sub<Sym(15)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope