include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {66,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {66,4}*528b
if this polytope has a name.
Group : SmallGroup(528,162)
Rank : 3
Schlafli Type : {66,4}
Number of vertices, edges, etc : 66, 132, 4
Order of s0s1s2 : 66
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{66,4,2} of size 1056
Vertex Figure Of :
{2,66,4} of size 1056
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {33,4}*264
11-fold quotients : {6,4}*48c
22-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {132,4}*1056b, {132,4}*1056c, {66,4}*1056
3-fold covers : {198,4}*1584b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 41)( 6, 43)( 7, 42)( 8, 44)( 9, 37)( 10, 39)( 11, 38)
( 12, 40)( 13, 33)( 14, 35)( 15, 34)( 16, 36)( 17, 29)( 18, 31)( 19, 30)
( 20, 32)( 21, 25)( 22, 27)( 23, 26)( 24, 28)( 45, 89)( 46, 91)( 47, 90)
( 48, 92)( 49,129)( 50,131)( 51,130)( 52,132)( 53,125)( 54,127)( 55,126)
( 56,128)( 57,121)( 58,123)( 59,122)( 60,124)( 61,117)( 62,119)( 63,118)
( 64,120)( 65,113)( 66,115)( 67,114)( 68,116)( 69,109)( 70,111)( 71,110)
( 72,112)( 73,105)( 74,107)( 75,106)( 76,108)( 77,101)( 78,103)( 79,102)
( 80,104)( 81, 97)( 82, 99)( 83, 98)( 84,100)( 85, 93)( 86, 95)( 87, 94)
( 88, 96)(134,135)(137,173)(138,175)(139,174)(140,176)(141,169)(142,171)
(143,170)(144,172)(145,165)(146,167)(147,166)(148,168)(149,161)(150,163)
(151,162)(152,164)(153,157)(154,159)(155,158)(156,160)(177,221)(178,223)
(179,222)(180,224)(181,261)(182,263)(183,262)(184,264)(185,257)(186,259)
(187,258)(188,260)(189,253)(190,255)(191,254)(192,256)(193,249)(194,251)
(195,250)(196,252)(197,245)(198,247)(199,246)(200,248)(201,241)(202,243)
(203,242)(204,244)(205,237)(206,239)(207,238)(208,240)(209,233)(210,235)
(211,234)(212,236)(213,229)(214,231)(215,230)(216,232)(217,225)(218,227)
(219,226)(220,228);;
s1 := ( 1,181)( 2,182)( 3,184)( 4,183)( 5,177)( 6,178)( 7,180)( 8,179)
( 9,217)( 10,218)( 11,220)( 12,219)( 13,213)( 14,214)( 15,216)( 16,215)
( 17,209)( 18,210)( 19,212)( 20,211)( 21,205)( 22,206)( 23,208)( 24,207)
( 25,201)( 26,202)( 27,204)( 28,203)( 29,197)( 30,198)( 31,200)( 32,199)
( 33,193)( 34,194)( 35,196)( 36,195)( 37,189)( 38,190)( 39,192)( 40,191)
( 41,185)( 42,186)( 43,188)( 44,187)( 45,137)( 46,138)( 47,140)( 48,139)
( 49,133)( 50,134)( 51,136)( 52,135)( 53,173)( 54,174)( 55,176)( 56,175)
( 57,169)( 58,170)( 59,172)( 60,171)( 61,165)( 62,166)( 63,168)( 64,167)
( 65,161)( 66,162)( 67,164)( 68,163)( 69,157)( 70,158)( 71,160)( 72,159)
( 73,153)( 74,154)( 75,156)( 76,155)( 77,149)( 78,150)( 79,152)( 80,151)
( 81,145)( 82,146)( 83,148)( 84,147)( 85,141)( 86,142)( 87,144)( 88,143)
( 89,225)( 90,226)( 91,228)( 92,227)( 93,221)( 94,222)( 95,224)( 96,223)
( 97,261)( 98,262)( 99,264)(100,263)(101,257)(102,258)(103,260)(104,259)
(105,253)(106,254)(107,256)(108,255)(109,249)(110,250)(111,252)(112,251)
(113,245)(114,246)(115,248)(116,247)(117,241)(118,242)(119,244)(120,243)
(121,237)(122,238)(123,240)(124,239)(125,233)(126,234)(127,236)(128,235)
(129,229)(130,230)(131,232)(132,231);;
s2 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)( 14, 15)
( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)
( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)
( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)
( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)
( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)
(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)
(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)
(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)
(161,164)(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)
(177,180)(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)
(193,196)(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)
(209,212)(210,211)(213,216)(214,215)(217,220)(218,219)(221,224)(222,223)
(225,228)(226,227)(229,232)(230,231)(233,236)(234,235)(237,240)(238,239)
(241,244)(242,243)(245,248)(246,247)(249,252)(250,251)(253,256)(254,255)
(257,260)(258,259)(261,264)(262,263);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(264)!( 2, 3)( 5, 41)( 6, 43)( 7, 42)( 8, 44)( 9, 37)( 10, 39)
( 11, 38)( 12, 40)( 13, 33)( 14, 35)( 15, 34)( 16, 36)( 17, 29)( 18, 31)
( 19, 30)( 20, 32)( 21, 25)( 22, 27)( 23, 26)( 24, 28)( 45, 89)( 46, 91)
( 47, 90)( 48, 92)( 49,129)( 50,131)( 51,130)( 52,132)( 53,125)( 54,127)
( 55,126)( 56,128)( 57,121)( 58,123)( 59,122)( 60,124)( 61,117)( 62,119)
( 63,118)( 64,120)( 65,113)( 66,115)( 67,114)( 68,116)( 69,109)( 70,111)
( 71,110)( 72,112)( 73,105)( 74,107)( 75,106)( 76,108)( 77,101)( 78,103)
( 79,102)( 80,104)( 81, 97)( 82, 99)( 83, 98)( 84,100)( 85, 93)( 86, 95)
( 87, 94)( 88, 96)(134,135)(137,173)(138,175)(139,174)(140,176)(141,169)
(142,171)(143,170)(144,172)(145,165)(146,167)(147,166)(148,168)(149,161)
(150,163)(151,162)(152,164)(153,157)(154,159)(155,158)(156,160)(177,221)
(178,223)(179,222)(180,224)(181,261)(182,263)(183,262)(184,264)(185,257)
(186,259)(187,258)(188,260)(189,253)(190,255)(191,254)(192,256)(193,249)
(194,251)(195,250)(196,252)(197,245)(198,247)(199,246)(200,248)(201,241)
(202,243)(203,242)(204,244)(205,237)(206,239)(207,238)(208,240)(209,233)
(210,235)(211,234)(212,236)(213,229)(214,231)(215,230)(216,232)(217,225)
(218,227)(219,226)(220,228);
s1 := Sym(264)!( 1,181)( 2,182)( 3,184)( 4,183)( 5,177)( 6,178)( 7,180)
( 8,179)( 9,217)( 10,218)( 11,220)( 12,219)( 13,213)( 14,214)( 15,216)
( 16,215)( 17,209)( 18,210)( 19,212)( 20,211)( 21,205)( 22,206)( 23,208)
( 24,207)( 25,201)( 26,202)( 27,204)( 28,203)( 29,197)( 30,198)( 31,200)
( 32,199)( 33,193)( 34,194)( 35,196)( 36,195)( 37,189)( 38,190)( 39,192)
( 40,191)( 41,185)( 42,186)( 43,188)( 44,187)( 45,137)( 46,138)( 47,140)
( 48,139)( 49,133)( 50,134)( 51,136)( 52,135)( 53,173)( 54,174)( 55,176)
( 56,175)( 57,169)( 58,170)( 59,172)( 60,171)( 61,165)( 62,166)( 63,168)
( 64,167)( 65,161)( 66,162)( 67,164)( 68,163)( 69,157)( 70,158)( 71,160)
( 72,159)( 73,153)( 74,154)( 75,156)( 76,155)( 77,149)( 78,150)( 79,152)
( 80,151)( 81,145)( 82,146)( 83,148)( 84,147)( 85,141)( 86,142)( 87,144)
( 88,143)( 89,225)( 90,226)( 91,228)( 92,227)( 93,221)( 94,222)( 95,224)
( 96,223)( 97,261)( 98,262)( 99,264)(100,263)(101,257)(102,258)(103,260)
(104,259)(105,253)(106,254)(107,256)(108,255)(109,249)(110,250)(111,252)
(112,251)(113,245)(114,246)(115,248)(116,247)(117,241)(118,242)(119,244)
(120,243)(121,237)(122,238)(123,240)(124,239)(125,233)(126,234)(127,236)
(128,235)(129,229)(130,230)(131,232)(132,231);
s2 := Sym(264)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)
( 14, 15)( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)
( 30, 31)( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)
( 46, 47)( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)
( 62, 63)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)
( 78, 79)( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)
( 94, 95)( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)
(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)
(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)
(142,143)(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)
(158,159)(161,164)(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)
(174,175)(177,180)(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)
(190,191)(193,196)(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)
(206,207)(209,212)(210,211)(213,216)(214,215)(217,220)(218,219)(221,224)
(222,223)(225,228)(226,227)(229,232)(230,231)(233,236)(234,235)(237,240)
(238,239)(241,244)(242,243)(245,248)(246,247)(249,252)(250,251)(253,256)
(254,255)(257,260)(258,259)(261,264)(262,263);
poly := sub<Sym(264)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope