include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,18,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,18,2}*576a
if this polytope has a name.
Group : SmallGroup(576,5012)
Rank : 5
Schlafli Type : {2,4,18,2}
Number of vertices, edges, etc : 2, 4, 36, 18, 2
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,18,2,2} of size 1152
{2,4,18,2,3} of size 1728
Vertex Figure Of :
{2,2,4,18,2} of size 1152
{3,2,4,18,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,18,2}*288
3-fold quotients : {2,4,6,2}*192a
4-fold quotients : {2,2,9,2}*144
6-fold quotients : {2,2,6,2}*96
9-fold quotients : {2,4,2,2}*64
12-fold quotients : {2,2,3,2}*48
18-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,18,2}*1152, {2,4,36,2}*1152a, {2,4,18,4}*1152a, {2,8,18,2}*1152
3-fold covers : {2,4,54,2}*1728a, {2,12,18,2}*1728a, {2,4,18,6}*1728a, {2,4,18,6}*1728b, {6,4,18,2}*1728, {2,12,18,2}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38);;
s2 := ( 3,21)( 4,23)( 5,22)( 6,28)( 7,27)( 8,29)( 9,25)(10,24)(11,26)(12,30)
(13,32)(14,31)(15,37)(16,36)(17,38)(18,34)(19,33)(20,35);;
s3 := ( 3, 6)( 4, 8)( 5, 7)( 9,10)(12,15)(13,17)(14,16)(18,19)(21,24)(22,26)
(23,25)(27,28)(30,33)(31,35)(32,34)(36,37);;
s4 := (39,40);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38);
s2 := Sym(40)!( 3,21)( 4,23)( 5,22)( 6,28)( 7,27)( 8,29)( 9,25)(10,24)(11,26)
(12,30)(13,32)(14,31)(15,37)(16,36)(17,38)(18,34)(19,33)(20,35);
s3 := Sym(40)!( 3, 6)( 4, 8)( 5, 7)( 9,10)(12,15)(13,17)(14,16)(18,19)(21,24)
(22,26)(23,25)(27,28)(30,33)(31,35)(32,34)(36,37);
s4 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope