include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8}*576a
if this polytope has a name.
Group : SmallGroup(576,5339)
Rank : 3
Schlafli Type : {4,8}
Number of vertices, edges, etc : 36, 144, 72
Order of s0s1s2 : 24
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,8,2} of size 1152
Vertex Figure Of :
{2,4,8} of size 1152
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4}*288
4-fold quotients : {4,4}*144
8-fold quotients : {4,4}*72
9-fold quotients : {4,8}*64a
18-fold quotients : {4,4}*32, {2,8}*32
36-fold quotients : {2,4}*16, {4,2}*16
72-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,8}*1152a, {8,8}*1152a, {8,8}*1152c, {4,16}*1152a, {4,16}*1152b
3-fold covers : {4,24}*1728b, {12,8}*1728b, {4,24}*1728f, {12,8}*1728e
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)(60,63)
(67,70)(68,71)(69,72);;
s1 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)(22,29)
(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)(42,62)
(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)(53,69)
(54,72);;
s2 := ( 1,38)( 2,37)( 3,39)( 4,41)( 5,40)( 6,42)( 7,44)( 8,43)( 9,45)(10,47)
(11,46)(12,48)(13,50)(14,49)(15,51)(16,53)(17,52)(18,54)(19,65)(20,64)(21,66)
(22,68)(23,67)(24,69)(25,71)(26,70)(27,72)(28,56)(29,55)(30,57)(31,59)(32,58)
(33,60)(34,62)(35,61)(36,63);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(72)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)
(60,63)(67,70)(68,71)(69,72);
s1 := Sym(72)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)
(22,29)(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)
(42,62)(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)
(53,69)(54,72);
s2 := Sym(72)!( 1,38)( 2,37)( 3,39)( 4,41)( 5,40)( 6,42)( 7,44)( 8,43)( 9,45)
(10,47)(11,46)(12,48)(13,50)(14,49)(15,51)(16,53)(17,52)(18,54)(19,65)(20,64)
(21,66)(22,68)(23,67)(24,69)(25,71)(26,70)(27,72)(28,56)(29,55)(30,57)(31,59)
(32,58)(33,60)(34,62)(35,61)(36,63);
poly := sub<Sym(72)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope