Polytope of Type {6,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,4}*576
Also Known As : {{6,4}4,{4,4|2}}. if this polytope has another name.
Group : SmallGroup(576,8418)
Rank : 4
Schlafli Type : {6,4,4}
Number of vertices, edges, etc : 18, 36, 24, 4
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,4,4,2} of size 1152
Vertex Figure Of :
   {2,6,4,4} of size 1152
   {3,6,4,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,4,4}*288, {6,4,2}*288
   4-fold quotients : {6,4,2}*144
   9-fold quotients : {2,4,4}*64
   18-fold quotients : {2,2,4}*32, {2,4,2}*32
   36-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,4,4}*1152, {6,4,8}*1152a, {6,8,4}*1152a, {6,4,8}*1152b, {6,8,4}*1152b, {6,4,4}*1152a
   3-fold covers : {6,4,4}*1728a, {6,12,4}*1728h, {6,12,4}*1728i, {6,4,12}*1728a, {6,4,4}*1728c, {6,12,4}*1728o, {6,12,4}*1728q
Permutation Representation (GAP) :
s0 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,46)
(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,55)(20,57)(21,56)
(22,61)(23,63)(24,62)(25,58)(26,60)(27,59)(28,64)(29,66)(30,65)(31,70)(32,72)
(33,71)(34,67)(35,69)(36,68);;
s1 := ( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)
(29,32)(30,33)(37,40)(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)(57,60)
(64,67)(65,68)(66,69);;
s2 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)(22,29)
(23,32)(24,35)(25,30)(26,33)(27,36)(38,40)(39,43)(42,44)(47,49)(48,52)(51,53)
(55,64)(56,67)(57,70)(58,65)(59,68)(60,71)(61,66)(62,69)(63,72);;
s3 := ( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)
(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)
(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)
(51,69)(52,70)(53,71)(54,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(72)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,46)(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,55)(20,57)
(21,56)(22,61)(23,63)(24,62)(25,58)(26,60)(27,59)(28,64)(29,66)(30,65)(31,70)
(32,72)(33,71)(34,67)(35,69)(36,68);
s1 := Sym(72)!( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)
(28,31)(29,32)(30,33)(37,40)(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)
(57,60)(64,67)(65,68)(66,69);
s2 := Sym(72)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)
(22,29)(23,32)(24,35)(25,30)(26,33)(27,36)(38,40)(39,43)(42,44)(47,49)(48,52)
(51,53)(55,64)(56,67)(57,70)(58,65)(59,68)(60,71)(61,66)(62,69)(63,72);
s3 := Sym(72)!( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)
(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)
(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)
(50,68)(51,69)(52,70)(53,71)(54,72);
poly := sub<Sym(72)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope