Polytope of Type {3,6,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4,4}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46671)
Rank : 5
Schlafli Type : {3,6,4,4}
Number of vertices, edges, etc : 3, 27, 36, 24, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,4,2}*864b
   9-fold quotients : {3,2,4,4}*192
   18-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 19)( 11, 21)( 12, 20)( 13, 25)
( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)( 43, 49)
( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)( 65, 75)
( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 91,100)( 92,102)( 93,101)( 94,106)( 95,108)
( 96,107)( 97,103)( 98,105)( 99,104);;
s1 := (  1, 11)(  2, 10)(  3, 12)(  4, 17)(  5, 16)(  6, 18)(  7, 14)(  8, 13)
(  9, 15)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 38)( 29, 37)( 30, 39)
( 31, 44)( 32, 43)( 33, 45)( 34, 41)( 35, 40)( 36, 42)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73, 74)( 76, 80)( 77, 79)( 78, 81)( 82, 92)
( 83, 91)( 84, 93)( 85, 98)( 86, 97)( 87, 99)( 88, 95)( 89, 94)( 90, 96)
(100,101)(103,107)(104,106)(105,108);;
s2 := (  2,  8)(  3,  6)(  4,  7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)( 21, 24)
( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)( 47, 53)
( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)( 67, 70)
( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)( 93, 96)
( 94, 97)(101,107)(102,105)(103,106);;
s3 := (  4,  9)(  5,  7)(  6,  8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)( 23, 25)
( 24, 26)( 31, 36)( 32, 34)( 33, 35)( 40, 45)( 41, 43)( 42, 44)( 49, 54)
( 50, 52)( 51, 53)( 55, 82)( 56, 83)( 57, 84)( 58, 90)( 59, 88)( 60, 89)
( 61, 86)( 62, 87)( 63, 85)( 64, 91)( 65, 92)( 66, 93)( 67, 99)( 68, 97)
( 69, 98)( 70, 95)( 71, 96)( 72, 94)( 73,100)( 74,101)( 75,102)( 76,108)
( 77,106)( 78,107)( 79,104)( 80,105)( 81,103);;
s4 := (  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)
(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 19)( 11, 21)( 12, 20)
( 13, 25)( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)
( 43, 49)( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)
( 65, 75)( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 91,100)( 92,102)( 93,101)( 94,106)
( 95,108)( 96,107)( 97,103)( 98,105)( 99,104);
s1 := Sym(108)!(  1, 11)(  2, 10)(  3, 12)(  4, 17)(  5, 16)(  6, 18)(  7, 14)
(  8, 13)(  9, 15)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 38)( 29, 37)
( 30, 39)( 31, 44)( 32, 43)( 33, 45)( 34, 41)( 35, 40)( 36, 42)( 46, 47)
( 49, 53)( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)
( 60, 72)( 61, 68)( 62, 67)( 63, 69)( 73, 74)( 76, 80)( 77, 79)( 78, 81)
( 82, 92)( 83, 91)( 84, 93)( 85, 98)( 86, 97)( 87, 99)( 88, 95)( 89, 94)
( 90, 96)(100,101)(103,107)(104,106)(105,108);
s2 := Sym(108)!(  2,  8)(  3,  6)(  4,  7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)
( 21, 24)( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)
( 47, 53)( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)
( 67, 70)( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)
( 93, 96)( 94, 97)(101,107)(102,105)(103,106);
s3 := Sym(108)!(  4,  9)(  5,  7)(  6,  8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)
( 23, 25)( 24, 26)( 31, 36)( 32, 34)( 33, 35)( 40, 45)( 41, 43)( 42, 44)
( 49, 54)( 50, 52)( 51, 53)( 55, 82)( 56, 83)( 57, 84)( 58, 90)( 59, 88)
( 60, 89)( 61, 86)( 62, 87)( 63, 85)( 64, 91)( 65, 92)( 66, 93)( 67, 99)
( 68, 97)( 69, 98)( 70, 95)( 71, 96)( 72, 94)( 73,100)( 74,101)( 75,102)
( 76,108)( 77,106)( 78,107)( 79,104)( 80,105)( 81,103);
s4 := Sym(108)!(  1, 55)(  2, 56)(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)
(  8, 62)(  9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 
References : None.
to this polytope