Polytope of Type {6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3}*588
Also Known As : {6,3}(7,0), {6,3}14if this polytope has another name.
Group : SmallGroup(588,35)
Rank : 3
Schlafli Type : {6,3}
Number of vertices, edges, etc : 98, 147, 49
Order of s0s1s2 : 14
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,3,2} of size 1176
Vertex Figure Of :
   {2,6,3} of size 1176
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,6}*1176a
   3-fold covers : {6,3}*1764
Permutation Representation (GAP) :
s0 := ( 2,22)( 3,43)( 4,15)( 5,36)( 6, 8)( 7,29)( 9,27)(10,48)(11,20)(12,41)
(14,34)(16,25)(17,46)(19,39)(21,32)(24,44)(26,37)(28,30)(31,49)(33,42)
(38,47);;
s1 := ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48);;
s2 := ( 1,23)( 3,30)( 4, 9)( 5,37)( 6,16)( 7,44)( 8,25)(10,32)(12,39)(13,18)
(14,46)(15,27)(17,34)(19,41)(21,48)(24,29)(26,36)(28,43)(33,38)(35,45)
(42,47);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(49)!( 2,22)( 3,43)( 4,15)( 5,36)( 6, 8)( 7,29)( 9,27)(10,48)(11,20)
(12,41)(14,34)(16,25)(17,46)(19,39)(21,32)(24,44)(26,37)(28,30)(31,49)(33,42)
(38,47);
s1 := Sym(49)!( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)
(13,37)(14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
(42,48);
s2 := Sym(49)!( 1,23)( 3,30)( 4, 9)( 5,37)( 6,16)( 7,44)( 8,25)(10,32)(12,39)
(13,18)(14,46)(15,27)(17,34)(19,41)(21,48)(24,29)(26,36)(28,43)(33,38)(35,45)
(42,47);
poly := sub<Sym(49)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >; 
 
References : None.
to this polytope