Polytope of Type {6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3}*1764
Also Known As : {6,3}(7,7)if this polytope has another name.
Group : SmallGroup(1764,146)
Rank : 3
Schlafli Type : {6,3}
Number of vertices, edges, etc : 294, 441, 147
Order of s0s1s2 : 42
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3}*588
   49-fold quotients : {6,3}*36
   147-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  8)(  3, 15)(  4, 22)(  5, 29)(  6, 36)(  7, 43)( 10, 16)( 11, 23)
( 12, 30)( 13, 37)( 14, 44)( 18, 24)( 19, 31)( 20, 38)( 21, 45)( 26, 32)
( 27, 39)( 28, 46)( 34, 40)( 35, 47)( 42, 48)( 51, 57)( 52, 64)( 53, 71)
( 54, 78)( 55, 85)( 56, 92)( 59, 65)( 60, 72)( 61, 79)( 62, 86)( 63, 93)
( 67, 73)( 68, 80)( 69, 87)( 70, 94)( 75, 81)( 76, 88)( 77, 95)( 83, 89)
( 84, 96)( 91, 97)(100,106)(101,113)(102,120)(103,127)(104,134)(105,141)
(108,114)(109,121)(110,128)(111,135)(112,142)(116,122)(117,129)(118,136)
(119,143)(124,130)(125,137)(126,144)(132,138)(133,145)(140,146);;
s1 := (  2, 36)(  3, 22)(  4,  8)(  5, 43)(  6, 29)(  7, 15)(  9, 39)( 10, 25)
( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)( 23, 38)
( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)( 52,120)
( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)( 60,109)
( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)( 68,147)
( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)( 76,129)
( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)( 84,118)
( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)( 92,103)
( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);;
s2 := (  1, 58)(  2, 51)(  3, 93)(  4, 86)(  5, 79)(  6, 72)(  7, 65)(  8, 57)
(  9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)( 16, 56)
( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)( 24, 97)
( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)( 32, 89)
( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)( 40, 81)
( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)( 48, 73)
( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)(108,141)
(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)(118,126)
(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(147)!(  2,  8)(  3, 15)(  4, 22)(  5, 29)(  6, 36)(  7, 43)( 10, 16)
( 11, 23)( 12, 30)( 13, 37)( 14, 44)( 18, 24)( 19, 31)( 20, 38)( 21, 45)
( 26, 32)( 27, 39)( 28, 46)( 34, 40)( 35, 47)( 42, 48)( 51, 57)( 52, 64)
( 53, 71)( 54, 78)( 55, 85)( 56, 92)( 59, 65)( 60, 72)( 61, 79)( 62, 86)
( 63, 93)( 67, 73)( 68, 80)( 69, 87)( 70, 94)( 75, 81)( 76, 88)( 77, 95)
( 83, 89)( 84, 96)( 91, 97)(100,106)(101,113)(102,120)(103,127)(104,134)
(105,141)(108,114)(109,121)(110,128)(111,135)(112,142)(116,122)(117,129)
(118,136)(119,143)(124,130)(125,137)(126,144)(132,138)(133,145)(140,146);
s1 := Sym(147)!(  2, 36)(  3, 22)(  4,  8)(  5, 43)(  6, 29)(  7, 15)(  9, 39)
( 10, 25)( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)
( 23, 38)( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)
( 52,120)( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)
( 60,109)( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)
( 68,147)( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)
( 76,129)( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)
( 84,118)( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)
( 92,103)( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);
s2 := Sym(147)!(  1, 58)(  2, 51)(  3, 93)(  4, 86)(  5, 79)(  6, 72)(  7, 65)
(  8, 57)(  9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)
( 16, 56)( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)
( 24, 97)( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)
( 32, 89)( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)
( 40, 81)( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)
( 48, 73)( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)
(108,141)(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)
(118,126)(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);
poly := sub<Sym(147)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope