include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,15}*600
if this polytope has a name.
Group : SmallGroup(600,146)
Rank : 3
Schlafli Type : {5,15}
Number of vertices, edges, etc : 20, 150, 60
Order of s0s1s2 : 10
Order of s0s1s2s1 : 5
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{5,15,2} of size 1200
Vertex Figure Of :
{2,5,15} of size 1200
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {5,3}*120
10-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,30}*1200b, {10,15}*1200b
3-fold covers : {15,15}*1800b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7, 8)( 9,10);;
s1 := (1,2)(3,4)(6,7)(8,9);;
s2 := ( 2, 3)( 4, 5)( 7,10)( 8, 9);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(10)!( 2, 3)( 4, 5)( 7, 8)( 9,10);
s1 := Sym(10)!(1,2)(3,4)(6,7)(8,9);
s2 := Sym(10)!( 2, 3)( 4, 5)( 7,10)( 8, 9);
poly := sub<Sym(10)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope