include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*600b
if this polytope has a name.
Group : SmallGroup(600,154)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 50, 150, 50
Order of s0s1s2 : 10
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{6,6,2} of size 1200
Vertex Figure Of :
{2,6,6} of size 1200
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6}*300
75-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,6}*1200a, {6,12}*1200b
3-fold covers : {6,6}*1800a, {6,6}*1800d
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 13)( 4, 19)( 5, 25)( 6, 21)( 9, 14)( 10, 20)( 11, 16)
( 12, 22)( 18, 23)( 26, 51)( 27, 57)( 28, 63)( 29, 69)( 30, 75)( 31, 71)
( 32, 52)( 33, 58)( 34, 64)( 35, 70)( 36, 66)( 37, 72)( 38, 53)( 39, 59)
( 40, 65)( 41, 61)( 42, 67)( 43, 73)( 44, 54)( 45, 60)( 46, 56)( 47, 62)
( 48, 68)( 49, 74)( 50, 55)( 77, 82)( 78, 88)( 79, 94)( 80,100)( 81, 96)
( 84, 89)( 85, 95)( 86, 91)( 87, 97)( 93, 98)(101,126)(102,132)(103,138)
(104,144)(105,150)(106,146)(107,127)(108,133)(109,139)(110,145)(111,141)
(112,147)(113,128)(114,134)(115,140)(116,136)(117,142)(118,148)(119,129)
(120,135)(121,131)(122,137)(123,143)(124,149)(125,130);;
s1 := ( 1,101)( 2,124)( 3,117)( 4,115)( 5,108)( 6,114)( 7,107)( 8,105)
( 9,123)( 10,116)( 11,122)( 12,120)( 13,113)( 14,106)( 15,104)( 16,110)
( 17,103)( 18,121)( 19,119)( 20,112)( 21,118)( 22,111)( 23,109)( 24,102)
( 25,125)( 26, 76)( 27, 99)( 28, 92)( 29, 90)( 30, 83)( 31, 89)( 32, 82)
( 33, 80)( 34, 98)( 35, 91)( 36, 97)( 37, 95)( 38, 88)( 39, 81)( 40, 79)
( 41, 85)( 42, 78)( 43, 96)( 44, 94)( 45, 87)( 46, 93)( 47, 86)( 48, 84)
( 49, 77)( 50,100)( 51,126)( 52,149)( 53,142)( 54,140)( 55,133)( 56,139)
( 57,132)( 58,130)( 59,148)( 60,141)( 61,147)( 62,145)( 63,138)( 64,131)
( 65,129)( 66,135)( 67,128)( 68,146)( 69,144)( 70,137)( 71,143)( 72,136)
( 73,134)( 74,127)( 75,150);;
s2 := ( 1, 8)( 3, 21)( 4, 20)( 5, 14)( 6, 13)( 9, 25)( 10, 19)( 11, 18)
( 15, 24)( 16, 23)( 26, 58)( 27, 52)( 28, 71)( 29, 70)( 30, 64)( 31, 63)
( 32, 57)( 33, 51)( 34, 75)( 35, 69)( 36, 68)( 37, 62)( 38, 56)( 39, 55)
( 40, 74)( 41, 73)( 42, 67)( 43, 61)( 44, 60)( 45, 54)( 46, 53)( 47, 72)
( 48, 66)( 49, 65)( 50, 59)( 76, 83)( 78, 96)( 79, 95)( 80, 89)( 81, 88)
( 84,100)( 85, 94)( 86, 93)( 90, 99)( 91, 98)(101,133)(102,127)(103,146)
(104,145)(105,139)(106,138)(107,132)(108,126)(109,150)(110,144)(111,143)
(112,137)(113,131)(114,130)(115,149)(116,148)(117,142)(118,136)(119,135)
(120,129)(121,128)(122,147)(123,141)(124,140)(125,134);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(150)!( 2, 7)( 3, 13)( 4, 19)( 5, 25)( 6, 21)( 9, 14)( 10, 20)
( 11, 16)( 12, 22)( 18, 23)( 26, 51)( 27, 57)( 28, 63)( 29, 69)( 30, 75)
( 31, 71)( 32, 52)( 33, 58)( 34, 64)( 35, 70)( 36, 66)( 37, 72)( 38, 53)
( 39, 59)( 40, 65)( 41, 61)( 42, 67)( 43, 73)( 44, 54)( 45, 60)( 46, 56)
( 47, 62)( 48, 68)( 49, 74)( 50, 55)( 77, 82)( 78, 88)( 79, 94)( 80,100)
( 81, 96)( 84, 89)( 85, 95)( 86, 91)( 87, 97)( 93, 98)(101,126)(102,132)
(103,138)(104,144)(105,150)(106,146)(107,127)(108,133)(109,139)(110,145)
(111,141)(112,147)(113,128)(114,134)(115,140)(116,136)(117,142)(118,148)
(119,129)(120,135)(121,131)(122,137)(123,143)(124,149)(125,130);
s1 := Sym(150)!( 1,101)( 2,124)( 3,117)( 4,115)( 5,108)( 6,114)( 7,107)
( 8,105)( 9,123)( 10,116)( 11,122)( 12,120)( 13,113)( 14,106)( 15,104)
( 16,110)( 17,103)( 18,121)( 19,119)( 20,112)( 21,118)( 22,111)( 23,109)
( 24,102)( 25,125)( 26, 76)( 27, 99)( 28, 92)( 29, 90)( 30, 83)( 31, 89)
( 32, 82)( 33, 80)( 34, 98)( 35, 91)( 36, 97)( 37, 95)( 38, 88)( 39, 81)
( 40, 79)( 41, 85)( 42, 78)( 43, 96)( 44, 94)( 45, 87)( 46, 93)( 47, 86)
( 48, 84)( 49, 77)( 50,100)( 51,126)( 52,149)( 53,142)( 54,140)( 55,133)
( 56,139)( 57,132)( 58,130)( 59,148)( 60,141)( 61,147)( 62,145)( 63,138)
( 64,131)( 65,129)( 66,135)( 67,128)( 68,146)( 69,144)( 70,137)( 71,143)
( 72,136)( 73,134)( 74,127)( 75,150);
s2 := Sym(150)!( 1, 8)( 3, 21)( 4, 20)( 5, 14)( 6, 13)( 9, 25)( 10, 19)
( 11, 18)( 15, 24)( 16, 23)( 26, 58)( 27, 52)( 28, 71)( 29, 70)( 30, 64)
( 31, 63)( 32, 57)( 33, 51)( 34, 75)( 35, 69)( 36, 68)( 37, 62)( 38, 56)
( 39, 55)( 40, 74)( 41, 73)( 42, 67)( 43, 61)( 44, 60)( 45, 54)( 46, 53)
( 47, 72)( 48, 66)( 49, 65)( 50, 59)( 76, 83)( 78, 96)( 79, 95)( 80, 89)
( 81, 88)( 84,100)( 85, 94)( 86, 93)( 90, 99)( 91, 98)(101,133)(102,127)
(103,146)(104,145)(105,139)(106,138)(107,132)(108,126)(109,150)(110,144)
(111,143)(112,137)(113,131)(114,130)(115,149)(116,148)(117,142)(118,136)
(119,135)(120,129)(121,128)(122,147)(123,141)(124,140)(125,134);
poly := sub<Sym(150)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope