Polytopes for Group SmallGroup(624,251)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes : None.

Degenerate Polytopes :
  1. {2,2,3,2,13}*624
  2. {2,2,13,2,3}*624
  3. {2,3,2,2,13}*624
  4. {2,3,2,13,2}*624
  5. {2,3,2,26}*624
  6. {2,6,2,13}*624
  7. {2,6,26}*624
  8. {2,13,2,2,3}*624
  9. {2,13,2,3,2}*624
  10. {2,13,2,6}*624
  11. {2,26,2,3}*624
  12. {2,26,6}*624
  13. {3,2,2,2,13}*624
  14. {3,2,2,13,2}*624
  15. {3,2,2,26}*624
  16. {3,2,13,2,2}*624
  17. {3,2,26,2}*624
  18. {6,2,2,13}*624
  19. {6,2,13,2}*624
  20. {6,2,26}*624
  21. {6,26,2}*624
  22. {13,2,2,2,3}*624
  23. {13,2,2,3,2}*624
  24. {13,2,2,6}*624
  25. {13,2,3,2,2}*624
  26. {13,2,6,2}*624
  27. {26,2,2,3}*624
  28. {26,2,3,2}*624
  29. {26,2,6}*624
  30. {26,6,2}*624



Other Groups of Order 624 :
  1. SmallGroup(624,96) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(624,178) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(624,179) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(624,226) 0 nondegenerate polytopes and 2 degenerate polytopes.
  5. SmallGroup(624,228) 2 nondegenerate polytopes and 2 degenerate polytopes.
  6. SmallGroup(624,242) 4 nondegenerate polytopes and 6 degenerate polytopes.
  7. SmallGroup(624,245) 6 nondegenerate polytopes and 4 degenerate polytopes.
  8. SmallGroup(624,251) 0 nondegenerate polytopes and 30 degenerate polytopes (this group).
  9. SmallGroup(624,259) 0 nondegenerate polytopes and 7 degenerate polytopes.