Polytope of Type {2,2,2,5,2,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,5,2,2,2}*640
if this polytope has a name.
Group : SmallGroup(640,21540)
Rank : 8
Schlafli Type : {2,2,2,5,2,2,2}
Number of vertices, edges, etc : 2, 2, 2, 5, 5, 2, 2, 2
Order of s0s1s2s3s4s5s6s7 : 10
Order of s0s1s2s3s4s5s6s7s6s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,5,2,2,2,2} of size 1280
   {2,2,2,5,2,2,2,3} of size 1920
Vertex Figure Of :
   {2,2,2,2,5,2,2,2} of size 1280
   {3,2,2,2,5,2,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,2,5,2,2,4}*1280, {2,2,2,5,2,4,2}*1280, {2,4,2,5,2,2,2}*1280, {4,2,2,5,2,2,2}*1280, {2,2,2,10,2,2,2}*1280
   3-fold covers : {2,2,2,15,2,2,2}*1920, {2,2,2,5,2,2,6}*1920, {2,2,2,5,2,6,2}*1920, {2,6,2,5,2,2,2}*1920, {6,2,2,5,2,2,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11);;
s4 := ( 7, 8)( 9,10);;
s5 := (12,13);;
s6 := (14,15);;
s7 := (16,17);;
poly := Group([s0,s1,s2,s3,s4,s5,s6,s7]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6","s7");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  s6 := F.7;;  s7 := F.8;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s6*s6, s7*s7, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6, 
s3*s6*s3*s6, s4*s6*s4*s6, s5*s6*s5*s6, 
s0*s7*s0*s7, s1*s7*s1*s7, s2*s7*s2*s7, 
s3*s7*s3*s7, s4*s7*s4*s7, s5*s7*s5*s7, 
s6*s7*s6*s7, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(1,2);
s1 := Sym(17)!(3,4);
s2 := Sym(17)!(5,6);
s3 := Sym(17)!( 8, 9)(10,11);
s4 := Sym(17)!( 7, 8)( 9,10);
s5 := Sym(17)!(12,13);
s6 := Sym(17)!(14,15);
s7 := Sym(17)!(16,17);
poly := sub<Sym(17)|s0,s1,s2,s3,s4,s5,s6,s7>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6,s7> := Group< s0,s1,s2,s3,s4,s5,s6,s7 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s6*s6, s7*s7, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s0*s6*s0*s6, s1*s6*s1*s6, 
s2*s6*s2*s6, s3*s6*s3*s6, s4*s6*s4*s6, 
s5*s6*s5*s6, s0*s7*s0*s7, s1*s7*s1*s7, 
s2*s7*s2*s7, s3*s7*s3*s7, s4*s7*s4*s7, 
s5*s7*s5*s7, s6*s7*s6*s7, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope