Polytope of Type {3,2,9,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,9,2,3}*648
Tell me if this polytope has a name.
Group : SmallGroup(648,554)
Rank : 6
Schlafli Type : {3,2,9,2,3}
Number of vertices, edges, etc : 3, 3, 9, 9, 3, 3
Order of s0s1s2s3s4s5 : 9
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,9,2,3,2} of size 1296
Vertex Figure Of :
   {2,3,2,9,2,3} of size 1296
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,3,2,3}*216
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,9,2,6}*1296, {3,2,18,2,3}*1296, {6,2,9,2,3}*1296
   3-fold covers : {3,2,9,2,9}*1944, {9,2,9,2,3}*1944, {3,2,9,6,3}*1944, {3,6,9,2,3}*1944, {3,2,27,2,3}*1944
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)( 9,10)(11,12);;
s3 := ( 4, 5)( 6, 7)( 8, 9)(10,11);;
s4 := (14,15);;
s5 := (13,14);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!(2,3);
s1 := Sym(15)!(1,2);
s2 := Sym(15)!( 5, 6)( 7, 8)( 9,10)(11,12);
s3 := Sym(15)!( 4, 5)( 6, 7)( 8, 9)(10,11);
s4 := Sym(15)!(14,15);
s5 := Sym(15)!(13,14);
poly := sub<Sym(15)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

Suggest a published reference to this polytope