include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,28}*672
if this polytope has a name.
Group : SmallGroup(672,1260)
Rank : 3
Schlafli Type : {6,28}
Number of vertices, edges, etc : 12, 168, 56
Order of s0s1s2 : 42
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,28,2} of size 1344
Vertex Figure Of :
{2,6,28} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,28}*336b
4-fold quotients : {6,14}*168
7-fold quotients : {6,4}*96
12-fold quotients : {2,14}*56
14-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
24-fold quotients : {2,7}*28
28-fold quotients : {3,4}*24, {6,2}*24
56-fold quotients : {3,2}*12
84-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,28}*1344b, {6,28}*1344e, {6,56}*1344b, {6,56}*1344c, {12,28}*1344c
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 22, 23)( 26, 27)( 29, 57)
( 30, 59)( 31, 58)( 32, 60)( 33, 61)( 34, 63)( 35, 62)( 36, 64)( 37, 65)
( 38, 67)( 39, 66)( 40, 68)( 41, 69)( 42, 71)( 43, 70)( 44, 72)( 45, 73)
( 46, 75)( 47, 74)( 48, 76)( 49, 77)( 50, 79)( 51, 78)( 52, 80)( 53, 81)
( 54, 83)( 55, 82)( 56, 84)( 86, 87)( 90, 91)( 94, 95)( 98, 99)(102,103)
(106,107)(110,111)(113,141)(114,143)(115,142)(116,144)(117,145)(118,147)
(119,146)(120,148)(121,149)(122,151)(123,150)(124,152)(125,153)(126,155)
(127,154)(128,156)(129,157)(130,159)(131,158)(132,160)(133,161)(134,163)
(135,162)(136,164)(137,165)(138,167)(139,166)(140,168);;
s1 := ( 1, 29)( 2, 30)( 3, 32)( 4, 31)( 5, 53)( 6, 54)( 7, 56)( 8, 55)
( 9, 49)( 10, 50)( 11, 52)( 12, 51)( 13, 45)( 14, 46)( 15, 48)( 16, 47)
( 17, 41)( 18, 42)( 19, 44)( 20, 43)( 21, 37)( 22, 38)( 23, 40)( 24, 39)
( 25, 33)( 26, 34)( 27, 36)( 28, 35)( 59, 60)( 61, 81)( 62, 82)( 63, 84)
( 64, 83)( 65, 77)( 66, 78)( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)
( 72, 75)( 85,113)( 86,114)( 87,116)( 88,115)( 89,137)( 90,138)( 91,140)
( 92,139)( 93,133)( 94,134)( 95,136)( 96,135)( 97,129)( 98,130)( 99,132)
(100,131)(101,125)(102,126)(103,128)(104,127)(105,121)(106,122)(107,124)
(108,123)(109,117)(110,118)(111,120)(112,119)(143,144)(145,165)(146,166)
(147,168)(148,167)(149,161)(150,162)(151,164)(152,163)(153,157)(154,158)
(155,160)(156,159);;
s2 := ( 1, 92)( 2, 91)( 3, 90)( 4, 89)( 5, 88)( 6, 87)( 7, 86)( 8, 85)
( 9,112)( 10,111)( 11,110)( 12,109)( 13,108)( 14,107)( 15,106)( 16,105)
( 17,104)( 18,103)( 19,102)( 20,101)( 21,100)( 22, 99)( 23, 98)( 24, 97)
( 25, 96)( 26, 95)( 27, 94)( 28, 93)( 29,120)( 30,119)( 31,118)( 32,117)
( 33,116)( 34,115)( 35,114)( 36,113)( 37,140)( 38,139)( 39,138)( 40,137)
( 41,136)( 42,135)( 43,134)( 44,133)( 45,132)( 46,131)( 47,130)( 48,129)
( 49,128)( 50,127)( 51,126)( 52,125)( 53,124)( 54,123)( 55,122)( 56,121)
( 57,148)( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)( 64,141)
( 65,168)( 66,167)( 67,166)( 68,165)( 69,164)( 70,163)( 71,162)( 72,161)
( 73,160)( 74,159)( 75,158)( 76,157)( 77,156)( 78,155)( 79,154)( 80,153)
( 81,152)( 82,151)( 83,150)( 84,149);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(168)!( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 22, 23)( 26, 27)
( 29, 57)( 30, 59)( 31, 58)( 32, 60)( 33, 61)( 34, 63)( 35, 62)( 36, 64)
( 37, 65)( 38, 67)( 39, 66)( 40, 68)( 41, 69)( 42, 71)( 43, 70)( 44, 72)
( 45, 73)( 46, 75)( 47, 74)( 48, 76)( 49, 77)( 50, 79)( 51, 78)( 52, 80)
( 53, 81)( 54, 83)( 55, 82)( 56, 84)( 86, 87)( 90, 91)( 94, 95)( 98, 99)
(102,103)(106,107)(110,111)(113,141)(114,143)(115,142)(116,144)(117,145)
(118,147)(119,146)(120,148)(121,149)(122,151)(123,150)(124,152)(125,153)
(126,155)(127,154)(128,156)(129,157)(130,159)(131,158)(132,160)(133,161)
(134,163)(135,162)(136,164)(137,165)(138,167)(139,166)(140,168);
s1 := Sym(168)!( 1, 29)( 2, 30)( 3, 32)( 4, 31)( 5, 53)( 6, 54)( 7, 56)
( 8, 55)( 9, 49)( 10, 50)( 11, 52)( 12, 51)( 13, 45)( 14, 46)( 15, 48)
( 16, 47)( 17, 41)( 18, 42)( 19, 44)( 20, 43)( 21, 37)( 22, 38)( 23, 40)
( 24, 39)( 25, 33)( 26, 34)( 27, 36)( 28, 35)( 59, 60)( 61, 81)( 62, 82)
( 63, 84)( 64, 83)( 65, 77)( 66, 78)( 67, 80)( 68, 79)( 69, 73)( 70, 74)
( 71, 76)( 72, 75)( 85,113)( 86,114)( 87,116)( 88,115)( 89,137)( 90,138)
( 91,140)( 92,139)( 93,133)( 94,134)( 95,136)( 96,135)( 97,129)( 98,130)
( 99,132)(100,131)(101,125)(102,126)(103,128)(104,127)(105,121)(106,122)
(107,124)(108,123)(109,117)(110,118)(111,120)(112,119)(143,144)(145,165)
(146,166)(147,168)(148,167)(149,161)(150,162)(151,164)(152,163)(153,157)
(154,158)(155,160)(156,159);
s2 := Sym(168)!( 1, 92)( 2, 91)( 3, 90)( 4, 89)( 5, 88)( 6, 87)( 7, 86)
( 8, 85)( 9,112)( 10,111)( 11,110)( 12,109)( 13,108)( 14,107)( 15,106)
( 16,105)( 17,104)( 18,103)( 19,102)( 20,101)( 21,100)( 22, 99)( 23, 98)
( 24, 97)( 25, 96)( 26, 95)( 27, 94)( 28, 93)( 29,120)( 30,119)( 31,118)
( 32,117)( 33,116)( 34,115)( 35,114)( 36,113)( 37,140)( 38,139)( 39,138)
( 40,137)( 41,136)( 42,135)( 43,134)( 44,133)( 45,132)( 46,131)( 47,130)
( 48,129)( 49,128)( 50,127)( 51,126)( 52,125)( 53,124)( 54,123)( 55,122)
( 56,121)( 57,148)( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)
( 64,141)( 65,168)( 66,167)( 67,166)( 68,165)( 69,164)( 70,163)( 71,162)
( 72,161)( 73,160)( 74,159)( 75,158)( 76,157)( 77,156)( 78,155)( 79,154)
( 80,153)( 81,152)( 82,151)( 83,150)( 84,149);
poly := sub<Sym(168)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 >;
References : None.
to this polytope