Polytope of Type {10,34}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,34}*680
Also Known As : {10,34|2}. if this polytope has another name.
Group : SmallGroup(680,49)
Rank : 3
Schlafli Type : {10,34}
Number of vertices, edges, etc : 10, 170, 34
Order of s0s1s2 : 170
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,34,2} of size 1360
Vertex Figure Of :
   {2,10,34} of size 1360
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {2,34}*136
   10-fold quotients : {2,17}*68
   17-fold quotients : {10,2}*40
   34-fold quotients : {5,2}*20
   85-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,34}*1360, {10,68}*1360
Permutation Representation (GAP) :
s0 := ( 18, 69)( 19, 70)( 20, 71)( 21, 72)( 22, 73)( 23, 74)( 24, 75)( 25, 76)
( 26, 77)( 27, 78)( 28, 79)( 29, 80)( 30, 81)( 31, 82)( 32, 83)( 33, 84)
( 34, 85)( 35, 52)( 36, 53)( 37, 54)( 38, 55)( 39, 56)( 40, 57)( 41, 58)
( 42, 59)( 43, 60)( 44, 61)( 45, 62)( 46, 63)( 47, 64)( 48, 65)( 49, 66)
( 50, 67)( 51, 68)(103,154)(104,155)(105,156)(106,157)(107,158)(108,159)
(109,160)(110,161)(111,162)(112,163)(113,164)(114,165)(115,166)(116,167)
(117,168)(118,169)(119,170)(120,137)(121,138)(122,139)(123,140)(124,141)
(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)
(133,150)(134,151)(135,152)(136,153);;
s1 := (  1, 18)(  2, 34)(  3, 33)(  4, 32)(  5, 31)(  6, 30)(  7, 29)(  8, 28)
(  9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 23)( 14, 22)( 15, 21)( 16, 20)
( 17, 19)( 35, 69)( 36, 85)( 37, 84)( 38, 83)( 39, 82)( 40, 81)( 41, 80)
( 42, 79)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 74)( 48, 73)( 49, 72)
( 50, 71)( 51, 70)( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)( 58, 63)
( 59, 62)( 60, 61)( 86,103)( 87,119)( 88,118)( 89,117)( 90,116)( 91,115)
( 92,114)( 93,113)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)( 99,107)
(100,106)(101,105)(102,104)(120,154)(121,170)(122,169)(123,168)(124,167)
(125,166)(126,165)(127,164)(128,163)(129,162)(130,161)(131,160)(132,159)
(133,158)(134,157)(135,156)(136,155)(138,153)(139,152)(140,151)(141,150)
(142,149)(143,148)(144,147)(145,146);;
s2 := (  1, 87)(  2, 86)(  3,102)(  4,101)(  5,100)(  6, 99)(  7, 98)(  8, 97)
(  9, 96)( 10, 95)( 11, 94)( 12, 93)( 13, 92)( 14, 91)( 15, 90)( 16, 89)
( 17, 88)( 18,104)( 19,103)( 20,119)( 21,118)( 22,117)( 23,116)( 24,115)
( 25,114)( 26,113)( 27,112)( 28,111)( 29,110)( 30,109)( 31,108)( 32,107)
( 33,106)( 34,105)( 35,121)( 36,120)( 37,136)( 38,135)( 39,134)( 40,133)
( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)( 48,125)
( 49,124)( 50,123)( 51,122)( 52,138)( 53,137)( 54,153)( 55,152)( 56,151)
( 57,150)( 58,149)( 59,148)( 60,147)( 61,146)( 62,145)( 63,144)( 64,143)
( 65,142)( 66,141)( 67,140)( 68,139)( 69,155)( 70,154)( 71,170)( 72,169)
( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)
( 81,160)( 82,159)( 83,158)( 84,157)( 85,156);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(170)!( 18, 69)( 19, 70)( 20, 71)( 21, 72)( 22, 73)( 23, 74)( 24, 75)
( 25, 76)( 26, 77)( 27, 78)( 28, 79)( 29, 80)( 30, 81)( 31, 82)( 32, 83)
( 33, 84)( 34, 85)( 35, 52)( 36, 53)( 37, 54)( 38, 55)( 39, 56)( 40, 57)
( 41, 58)( 42, 59)( 43, 60)( 44, 61)( 45, 62)( 46, 63)( 47, 64)( 48, 65)
( 49, 66)( 50, 67)( 51, 68)(103,154)(104,155)(105,156)(106,157)(107,158)
(108,159)(109,160)(110,161)(111,162)(112,163)(113,164)(114,165)(115,166)
(116,167)(117,168)(118,169)(119,170)(120,137)(121,138)(122,139)(123,140)
(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)
(132,149)(133,150)(134,151)(135,152)(136,153);
s1 := Sym(170)!(  1, 18)(  2, 34)(  3, 33)(  4, 32)(  5, 31)(  6, 30)(  7, 29)
(  8, 28)(  9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 23)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 35, 69)( 36, 85)( 37, 84)( 38, 83)( 39, 82)( 40, 81)
( 41, 80)( 42, 79)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 74)( 48, 73)
( 49, 72)( 50, 71)( 51, 70)( 53, 68)( 54, 67)( 55, 66)( 56, 65)( 57, 64)
( 58, 63)( 59, 62)( 60, 61)( 86,103)( 87,119)( 88,118)( 89,117)( 90,116)
( 91,115)( 92,114)( 93,113)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)
( 99,107)(100,106)(101,105)(102,104)(120,154)(121,170)(122,169)(123,168)
(124,167)(125,166)(126,165)(127,164)(128,163)(129,162)(130,161)(131,160)
(132,159)(133,158)(134,157)(135,156)(136,155)(138,153)(139,152)(140,151)
(141,150)(142,149)(143,148)(144,147)(145,146);
s2 := Sym(170)!(  1, 87)(  2, 86)(  3,102)(  4,101)(  5,100)(  6, 99)(  7, 98)
(  8, 97)(  9, 96)( 10, 95)( 11, 94)( 12, 93)( 13, 92)( 14, 91)( 15, 90)
( 16, 89)( 17, 88)( 18,104)( 19,103)( 20,119)( 21,118)( 22,117)( 23,116)
( 24,115)( 25,114)( 26,113)( 27,112)( 28,111)( 29,110)( 30,109)( 31,108)
( 32,107)( 33,106)( 34,105)( 35,121)( 36,120)( 37,136)( 38,135)( 39,134)
( 40,133)( 41,132)( 42,131)( 43,130)( 44,129)( 45,128)( 46,127)( 47,126)
( 48,125)( 49,124)( 50,123)( 51,122)( 52,138)( 53,137)( 54,153)( 55,152)
( 56,151)( 57,150)( 58,149)( 59,148)( 60,147)( 61,146)( 62,145)( 63,144)
( 64,143)( 65,142)( 66,141)( 67,140)( 68,139)( 69,155)( 70,154)( 71,170)
( 72,169)( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)
( 80,161)( 81,160)( 82,159)( 83,158)( 84,157)( 85,156);
poly := sub<Sym(170)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope