include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {34}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {34}*68
Also Known As : 34-gon, {34}. if this polytope has another name.
Group : SmallGroup(68,4)
Rank : 2
Schlafli Type : {34}
Number of vertices, edges, etc : 34, 34
Order of s0s1 : 34
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{34,2} of size 136
{34,4} of size 272
{34,6} of size 408
{34,8} of size 544
{34,10} of size 680
{34,12} of size 816
{34,14} of size 952
{34,16} of size 1088
{34,17} of size 1156
{34,18} of size 1224
{34,20} of size 1360
{34,22} of size 1496
{34,24} of size 1632
{34,26} of size 1768
{34,28} of size 1904
Vertex Figure Of :
{2,34} of size 136
{4,34} of size 272
{6,34} of size 408
{8,34} of size 544
{10,34} of size 680
{12,34} of size 816
{14,34} of size 952
{16,34} of size 1088
{17,34} of size 1156
{18,34} of size 1224
{20,34} of size 1360
{22,34} of size 1496
{24,34} of size 1632
{26,34} of size 1768
{28,34} of size 1904
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {17}*34
17-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {68}*136
3-fold covers : {102}*204
4-fold covers : {136}*272
5-fold covers : {170}*340
6-fold covers : {204}*408
7-fold covers : {238}*476
8-fold covers : {272}*544
9-fold covers : {306}*612
10-fold covers : {340}*680
11-fold covers : {374}*748
12-fold covers : {408}*816
13-fold covers : {442}*884
14-fold covers : {476}*952
15-fold covers : {510}*1020
16-fold covers : {544}*1088
17-fold covers : {578}*1156
18-fold covers : {612}*1224
19-fold covers : {646}*1292
20-fold covers : {680}*1360
21-fold covers : {714}*1428
22-fold covers : {748}*1496
23-fold covers : {782}*1564
24-fold covers : {816}*1632
25-fold covers : {850}*1700
26-fold covers : {884}*1768
27-fold covers : {918}*1836
28-fold covers : {952}*1904
29-fold covers : {986}*1972
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)
(20,25)(22,23)(24,29)(26,27)(28,33)(30,31)(32,34);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(34)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34);
s1 := Sym(34)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)
(18,19)(20,25)(22,23)(24,29)(26,27)(28,33)(30,31)(32,34);
poly := sub<Sym(34)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope