include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,44}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,44}*704
if this polytope has a name.
Group : SmallGroup(704,1361)
Rank : 5
Schlafli Type : {2,2,2,44}
Number of vertices, edges, etc : 2, 2, 2, 44, 44
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,2,44,2} of size 1408
Vertex Figure Of :
{2,2,2,2,44} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,22}*352
4-fold quotients : {2,2,2,11}*176
11-fold quotients : {2,2,2,4}*64
22-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,4,44}*1408, {2,4,2,44}*1408, {4,2,2,44}*1408, {2,2,2,88}*1408
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)
(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42)(43,44)(45,48)(46,47)
(49,50);;
s4 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)(22,25)
(24,35)(26,37)(28,31)(30,33)(32,43)(34,45)(36,39)(38,41)(40,49)(42,46)(44,47)
(48,50);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!(3,4);
s2 := Sym(50)!(5,6);
s3 := Sym(50)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)
(27,28)(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42)(43,44)(45,48)(46,47)
(49,50);
s4 := Sym(50)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)
(22,25)(24,35)(26,37)(28,31)(30,33)(32,43)(34,45)(36,39)(38,41)(40,49)(42,46)
(44,47)(48,50);
poly := sub<Sym(50)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope