include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,20}*720
if this polytope has a name.
Group : SmallGroup(720,137)
Rank : 4
Schlafli Type : {9,2,20}
Number of vertices, edges, etc : 9, 9, 20, 20
Order of s0s1s2s3 : 180
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{9,2,20,2} of size 1440
Vertex Figure Of :
{2,9,2,20} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,10}*360
3-fold quotients : {3,2,20}*240
4-fold quotients : {9,2,5}*180
5-fold quotients : {9,2,4}*144
6-fold quotients : {3,2,10}*120
10-fold quotients : {9,2,2}*72
12-fold quotients : {3,2,5}*60
15-fold quotients : {3,2,4}*48
30-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,2,40}*1440, {18,2,20}*1440
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29);;
s3 := (10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,28)(21,25)(23,26)(27,29);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(29)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(29)!(11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29);
s3 := Sym(29)!(10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,28)(21,25)(23,26)
(27,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope