include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {90,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {90,2,2}*720
if this polytope has a name.
Group : SmallGroup(720,407)
Rank : 4
Schlafli Type : {90,2,2}
Number of vertices, edges, etc : 90, 90, 2, 2
Order of s0s1s2s3 : 90
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{90,2,2,2} of size 1440
Vertex Figure Of :
{2,90,2,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {45,2,2}*360
3-fold quotients : {30,2,2}*240
5-fold quotients : {18,2,2}*144
6-fold quotients : {15,2,2}*120
9-fold quotients : {10,2,2}*80
10-fold quotients : {9,2,2}*72
15-fold quotients : {6,2,2}*48
18-fold quotients : {5,2,2}*40
30-fold quotients : {3,2,2}*24
45-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {180,2,2}*1440, {90,2,4}*1440, {90,4,2}*1440a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4,13)( 5,15)( 6,14)( 7,10)( 8,12)( 9,11)(16,32)(17,31)(18,33)
(19,44)(20,43)(21,45)(22,41)(23,40)(24,42)(25,38)(26,37)(27,39)(28,35)(29,34)
(30,36)(47,48)(49,58)(50,60)(51,59)(52,55)(53,57)(54,56)(61,77)(62,76)(63,78)
(64,89)(65,88)(66,90)(67,86)(68,85)(69,87)(70,83)(71,82)(72,84)(73,80)(74,79)
(75,81);;
s1 := ( 1,64)( 2,66)( 3,65)( 4,61)( 5,63)( 6,62)( 7,73)( 8,75)( 9,74)(10,70)
(11,72)(12,71)(13,67)(14,69)(15,68)(16,49)(17,51)(18,50)(19,46)(20,48)(21,47)
(22,58)(23,60)(24,59)(25,55)(26,57)(27,56)(28,52)(29,54)(30,53)(31,80)(32,79)
(33,81)(34,77)(35,76)(36,78)(37,89)(38,88)(39,90)(40,86)(41,85)(42,87)(43,83)
(44,82)(45,84);;
s2 := (91,92);;
s3 := (93,94);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(94)!( 2, 3)( 4,13)( 5,15)( 6,14)( 7,10)( 8,12)( 9,11)(16,32)(17,31)
(18,33)(19,44)(20,43)(21,45)(22,41)(23,40)(24,42)(25,38)(26,37)(27,39)(28,35)
(29,34)(30,36)(47,48)(49,58)(50,60)(51,59)(52,55)(53,57)(54,56)(61,77)(62,76)
(63,78)(64,89)(65,88)(66,90)(67,86)(68,85)(69,87)(70,83)(71,82)(72,84)(73,80)
(74,79)(75,81);
s1 := Sym(94)!( 1,64)( 2,66)( 3,65)( 4,61)( 5,63)( 6,62)( 7,73)( 8,75)( 9,74)
(10,70)(11,72)(12,71)(13,67)(14,69)(15,68)(16,49)(17,51)(18,50)(19,46)(20,48)
(21,47)(22,58)(23,60)(24,59)(25,55)(26,57)(27,56)(28,52)(29,54)(30,53)(31,80)
(32,79)(33,81)(34,77)(35,76)(36,78)(37,89)(38,88)(39,90)(40,86)(41,85)(42,87)
(43,83)(44,82)(45,84);
s2 := Sym(94)!(91,92);
s3 := Sym(94)!(93,94);
poly := sub<Sym(94)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope