include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,2,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,2,12}*720
if this polytope has a name.
Group : SmallGroup(720,672)
Rank : 4
Schlafli Type : {15,2,12}
Number of vertices, edges, etc : 15, 15, 12, 12
Order of s0s1s2s3 : 60
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{15,2,12,2} of size 1440
Vertex Figure Of :
{2,15,2,12} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,2,6}*360
3-fold quotients : {5,2,12}*240, {15,2,4}*240
4-fold quotients : {15,2,3}*180
5-fold quotients : {3,2,12}*144
6-fold quotients : {5,2,6}*120, {15,2,2}*120
9-fold quotients : {5,2,4}*80
10-fold quotients : {3,2,6}*72
12-fold quotients : {5,2,3}*60
15-fold quotients : {3,2,4}*48
18-fold quotients : {5,2,2}*40
20-fold quotients : {3,2,3}*36
30-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {15,2,24}*1440, {30,2,12}*1440
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s2 := (17,18)(19,20)(22,25)(23,24)(26,27);;
s3 := (16,22)(17,19)(18,26)(20,23)(21,24)(25,27);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(27)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s2 := Sym(27)!(17,18)(19,20)(22,25)(23,24)(26,27);
s3 := Sym(27)!(16,22)(17,19)(18,26)(20,23)(21,24)(25,27);
poly := sub<Sym(27)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope