include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,30}*720c
if this polytope has a name.
Group : SmallGroup(720,687)
Rank : 3
Schlafli Type : {12,30}
Number of vertices, edges, etc : 12, 180, 30
Order of s0s1s2 : 60
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,30,2} of size 1440
Vertex Figure Of :
{2,12,30} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,30}*360c
3-fold quotients : {4,30}*240a
4-fold quotients : {6,15}*180
5-fold quotients : {12,6}*144c
6-fold quotients : {2,30}*120
9-fold quotients : {4,10}*80
10-fold quotients : {6,6}*72b
12-fold quotients : {2,15}*60
15-fold quotients : {4,6}*48a
18-fold quotients : {2,10}*40
20-fold quotients : {6,3}*36
30-fold quotients : {2,6}*24
36-fold quotients : {2,5}*20
45-fold quotients : {4,2}*16
60-fold quotients : {2,3}*12
90-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,60}*1440c, {24,30}*1440c
Permutation Representation (GAP) :
s0 := ( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)( 23, 38)
( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)( 61, 76)
( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,136)( 92,137)
( 93,138)( 94,139)( 95,140)( 96,141)( 97,142)( 98,143)( 99,144)(100,145)
(101,146)(102,147)(103,148)(104,149)(105,150)(106,166)(107,167)(108,168)
(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)(116,176)
(117,177)(118,178)(119,179)(120,180)(121,151)(122,152)(123,153)(124,154)
(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)
(133,163)(134,164)(135,165);;
s1 := ( 1,106)( 2,110)( 3,109)( 4,108)( 5,107)( 6,116)( 7,120)( 8,119)
( 9,118)( 10,117)( 11,111)( 12,115)( 13,114)( 14,113)( 15,112)( 16, 91)
( 17, 95)( 18, 94)( 19, 93)( 20, 92)( 21,101)( 22,105)( 23,104)( 24,103)
( 25,102)( 26, 96)( 27,100)( 28, 99)( 29, 98)( 30, 97)( 31,121)( 32,125)
( 33,124)( 34,123)( 35,122)( 36,131)( 37,135)( 38,134)( 39,133)( 40,132)
( 41,126)( 42,130)( 43,129)( 44,128)( 45,127)( 46,151)( 47,155)( 48,154)
( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)( 56,156)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,136)( 62,140)( 63,139)( 64,138)
( 65,137)( 66,146)( 67,150)( 68,149)( 69,148)( 70,147)( 71,141)( 72,145)
( 73,144)( 74,143)( 75,142)( 76,166)( 77,170)( 78,169)( 79,168)( 80,167)
( 81,176)( 82,180)( 83,179)( 84,178)( 85,177)( 86,171)( 87,175)( 88,174)
( 89,173)( 90,172);;
s2 := ( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)( 16, 37)
( 17, 36)( 18, 40)( 19, 39)( 20, 38)( 21, 32)( 22, 31)( 23, 35)( 24, 34)
( 25, 33)( 26, 42)( 27, 41)( 28, 45)( 29, 44)( 30, 43)( 46, 52)( 47, 51)
( 48, 55)( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 82)( 62, 81)( 63, 85)
( 64, 84)( 65, 83)( 66, 77)( 67, 76)( 68, 80)( 69, 79)( 70, 78)( 71, 87)
( 72, 86)( 73, 90)( 74, 89)( 75, 88)( 91, 97)( 92, 96)( 93,100)( 94, 99)
( 95, 98)(101,102)(103,105)(106,127)(107,126)(108,130)(109,129)(110,128)
(111,122)(112,121)(113,125)(114,124)(115,123)(116,132)(117,131)(118,135)
(119,134)(120,133)(136,142)(137,141)(138,145)(139,144)(140,143)(146,147)
(148,150)(151,172)(152,171)(153,175)(154,174)(155,173)(156,167)(157,166)
(158,170)(159,169)(160,168)(161,177)(162,176)(163,180)(164,179)(165,178);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(180)!( 16, 31)( 17, 32)( 18, 33)( 19, 34)( 20, 35)( 21, 36)( 22, 37)
( 23, 38)( 24, 39)( 25, 40)( 26, 41)( 27, 42)( 28, 43)( 29, 44)( 30, 45)
( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 91,136)
( 92,137)( 93,138)( 94,139)( 95,140)( 96,141)( 97,142)( 98,143)( 99,144)
(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,166)(107,167)
(108,168)(109,169)(110,170)(111,171)(112,172)(113,173)(114,174)(115,175)
(116,176)(117,177)(118,178)(119,179)(120,180)(121,151)(122,152)(123,153)
(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)
(132,162)(133,163)(134,164)(135,165);
s1 := Sym(180)!( 1,106)( 2,110)( 3,109)( 4,108)( 5,107)( 6,116)( 7,120)
( 8,119)( 9,118)( 10,117)( 11,111)( 12,115)( 13,114)( 14,113)( 15,112)
( 16, 91)( 17, 95)( 18, 94)( 19, 93)( 20, 92)( 21,101)( 22,105)( 23,104)
( 24,103)( 25,102)( 26, 96)( 27,100)( 28, 99)( 29, 98)( 30, 97)( 31,121)
( 32,125)( 33,124)( 34,123)( 35,122)( 36,131)( 37,135)( 38,134)( 39,133)
( 40,132)( 41,126)( 42,130)( 43,129)( 44,128)( 45,127)( 46,151)( 47,155)
( 48,154)( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)
( 56,156)( 57,160)( 58,159)( 59,158)( 60,157)( 61,136)( 62,140)( 63,139)
( 64,138)( 65,137)( 66,146)( 67,150)( 68,149)( 69,148)( 70,147)( 71,141)
( 72,145)( 73,144)( 74,143)( 75,142)( 76,166)( 77,170)( 78,169)( 79,168)
( 80,167)( 81,176)( 82,180)( 83,179)( 84,178)( 85,177)( 86,171)( 87,175)
( 88,174)( 89,173)( 90,172);
s2 := Sym(180)!( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)
( 16, 37)( 17, 36)( 18, 40)( 19, 39)( 20, 38)( 21, 32)( 22, 31)( 23, 35)
( 24, 34)( 25, 33)( 26, 42)( 27, 41)( 28, 45)( 29, 44)( 30, 43)( 46, 52)
( 47, 51)( 48, 55)( 49, 54)( 50, 53)( 56, 57)( 58, 60)( 61, 82)( 62, 81)
( 63, 85)( 64, 84)( 65, 83)( 66, 77)( 67, 76)( 68, 80)( 69, 79)( 70, 78)
( 71, 87)( 72, 86)( 73, 90)( 74, 89)( 75, 88)( 91, 97)( 92, 96)( 93,100)
( 94, 99)( 95, 98)(101,102)(103,105)(106,127)(107,126)(108,130)(109,129)
(110,128)(111,122)(112,121)(113,125)(114,124)(115,123)(116,132)(117,131)
(118,135)(119,134)(120,133)(136,142)(137,141)(138,145)(139,144)(140,143)
(146,147)(148,150)(151,172)(152,171)(153,175)(154,174)(155,173)(156,167)
(157,166)(158,170)(159,169)(160,168)(161,177)(162,176)(163,180)(164,179)
(165,178);
poly := sub<Sym(180)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope