Polytope of Type {5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10}*720
if this polytope has a name.
Group : SmallGroup(720,764)
Rank : 3
Schlafli Type : {5,10}
Number of vertices, edges, etc : 36, 180, 72
Order of s0s1s2 : 5
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {5,10,2} of size 1440
Vertex Figure Of :
   {2,5,10} of size 1440
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,10}*1440a, {10,10}*1440i, {10,10}*1440j
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 8)( 4,10)( 5, 6)( 7, 9);;
s1 := ( 1, 2)( 3, 4)( 5, 9)( 6, 8)( 7,10);;
s2 := ( 2, 9)( 4, 6)( 5,10)( 7, 8);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(10)!( 1, 3)( 2, 8)( 4,10)( 5, 6)( 7, 9);
s1 := Sym(10)!( 1, 2)( 3, 4)( 5, 9)( 6, 8)( 7,10);
s2 := Sym(10)!( 2, 9)( 4, 6)( 5,10)( 7, 8);
poly := sub<Sym(10)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope