include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {15,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,4}*720
if this polytope has a name.
Group : SmallGroup(720,767)
Rank : 3
Schlafli Type : {15,4}
Number of vertices, edges, etc : 90, 180, 24
Order of s0s1s2 : 6
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{15,4,2} of size 1440
Vertex Figure Of :
{2,15,4} of size 1440
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {5,4}*240
6-fold quotients : {5,4}*120
60-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {15,8}*1440, {30,4}*1440
Permutation Representation (GAP) :
s0 := (2,3)(5,6)(7,8);;
s1 := (1,2)(4,5)(6,7);;
s2 := (5,6);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s2*s0*s2*s0, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(2,3)(5,6)(7,8);
s1 := Sym(8)!(1,2)(4,5)(6,7);
s2 := Sym(8)!(5,6);
poly := sub<Sym(8)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s2*s0*s2*s0, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope