Polytope of Type {20,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4}*720
if this polytope has a name.
Group : SmallGroup(720,784)
Rank : 3
Schlafli Type : {20,4}
Number of vertices, edges, etc : 90, 180, 18
Order of s0s1s2 : 30
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {20,4,2} of size 1440
Vertex Figure Of :
   {2,20,4} of size 1440
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {4,4}*144
   10-fold quotients : {4,4}*72
   18-fold quotients : {10,2}*40
   36-fold quotients : {5,2}*20
   90-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,4}*1440
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,36)( 7,40)( 8,39)( 9,38)(10,37)(11,26)(12,30)(13,29)
(14,28)(15,27)(16,31)(17,35)(18,34)(19,33)(20,32)(22,25)(23,24)(42,45)
(43,44);;
s1 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,42)(17,41)(18,45)(19,44)
(20,43)(21,32)(22,31)(23,35)(24,34)(25,33)(26,37)(27,36)(28,40)(29,39)
(30,38);;
s2 := ( 1,21)( 2,22)( 3,23)( 4,24)( 5,25)( 6,31)( 7,32)( 8,33)( 9,34)(10,35)
(16,36)(17,37)(18,38)(19,39)(20,40);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(45)!( 2, 5)( 3, 4)( 6,36)( 7,40)( 8,39)( 9,38)(10,37)(11,26)(12,30)
(13,29)(14,28)(15,27)(16,31)(17,35)(18,34)(19,33)(20,32)(22,25)(23,24)(42,45)
(43,44);
s1 := Sym(45)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,42)(17,41)(18,45)
(19,44)(20,43)(21,32)(22,31)(23,35)(24,34)(25,33)(26,37)(27,36)(28,40)(29,39)
(30,38);
s2 := Sym(45)!( 1,21)( 2,22)( 3,23)( 4,24)( 5,25)( 6,31)( 7,32)( 8,33)( 9,34)
(10,35)(16,36)(17,37)(18,38)(19,39)(20,40);
poly := sub<Sym(45)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2 >; 
 
References : None.
to this polytope