# Polytope of Type {30,4}

Atlas Canonical Name : {30,4}*720
if this polytope has a name.
Group : SmallGroup(720,784)
Rank : 3
Schlafli Type : {30,4}
Number of vertices, edges, etc : 90, 180, 12
Order of s0s1s2 : 20
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
{30,4,2} of size 1440
Vertex Figure Of :
{2,30,4} of size 1440
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {6,4}*144
9-fold quotients : {10,4}*80
10-fold quotients : {6,4}*72
18-fold quotients : {10,2}*40
36-fold quotients : {5,2}*20
45-fold quotients : {2,4}*16
90-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {60,4}*1440, {30,8}*1440
Permutation Representation (GAP) :
```s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)(18,34)
(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)
(30,37);;
s1 := ( 1,17)( 2,16)( 3,20)( 4,19)( 5,18)( 6, 7)( 8,10)(11,42)(12,41)(13,45)
(14,44)(15,43)(21,37)(22,36)(23,40)(24,39)(25,38)(26,27)(28,30)(31,32)
(33,35);;
s2 := (16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)(25,35)
(26,36)(27,37)(28,38)(29,39)(30,40);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(45)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)
(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)
(29,38)(30,37);
s1 := Sym(45)!( 1,17)( 2,16)( 3,20)( 4,19)( 5,18)( 6, 7)( 8,10)(11,42)(12,41)
(13,45)(14,44)(15,43)(21,37)(22,36)(23,40)(24,39)(25,38)(26,27)(28,30)(31,32)
(33,35);
s2 := Sym(45)!(16,41)(17,42)(18,43)(19,44)(20,45)(21,31)(22,32)(23,33)(24,34)
(25,35)(26,36)(27,37)(28,38)(29,39)(30,40);
poly := sub<Sym(45)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope