Polytope of Type {6,10,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,10,2,3}*720
if this polytope has a name.
Group : SmallGroup(720,813)
Rank : 5
Schlafli Type : {6,10,2,3}
Number of vertices, edges, etc : 6, 30, 10, 3, 3
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,10,2,3,2} of size 1440
Vertex Figure Of :
   {2,6,10,2,3} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,10,2,3}*240
   5-fold quotients : {6,2,2,3}*144
   6-fold quotients : {2,5,2,3}*120
   10-fold quotients : {3,2,2,3}*72
   15-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,10,2,3}*1440, {6,20,2,3}*1440a, {6,10,2,6}*1440
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)(28,30);;
s1 := ( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)(19,20)
(21,28)(22,27)(25,26)(29,30);;
s2 := ( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)(14,29)
(16,22)(18,23)(20,25)(24,28)(26,30);;
s3 := (32,33);;
s4 := (31,32);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!( 3, 4)( 7, 8)(11,13)(12,14)(17,19)(18,20)(23,25)(24,26)(27,29)
(28,30);
s1 := Sym(33)!( 1, 3)( 2, 7)( 5,12)( 6,11)( 9,18)(10,17)(13,14)(15,24)(16,23)
(19,20)(21,28)(22,27)(25,26)(29,30);
s2 := Sym(33)!( 1, 9)( 2, 5)( 3,17)( 4,19)( 6,21)( 7,11)( 8,13)(10,15)(12,27)
(14,29)(16,22)(18,23)(20,25)(24,28)(26,30);
s3 := Sym(33)!(32,33);
s4 := Sym(33)!(31,32);
poly := sub<Sym(33)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope