include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,4,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,4,6,2}*768
if this polytope has a name.
Group : SmallGroup(768,1076197)
Rank : 6
Schlafli Type : {2,4,4,6,2}
Number of vertices, edges, etc : 2, 4, 8, 12, 6, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,6,2}*384a, {2,4,2,6,2}*384
3-fold quotients : {2,4,4,2,2}*256
4-fold quotients : {2,4,2,3,2}*192, {2,2,2,6,2}*192
6-fold quotients : {2,2,4,2,2}*128, {2,4,2,2,2}*128
8-fold quotients : {2,2,2,3,2}*96
12-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)(12,24)
(13,25)(14,26)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)
(36,48)(37,49)(38,50);;
s2 := (15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(27,30)(28,31)(29,32)(33,36)
(34,37)(35,38)(39,48)(40,49)(41,50)(42,45)(43,46)(44,47);;
s3 := ( 3,27)( 4,29)( 5,28)( 6,30)( 7,32)( 8,31)( 9,33)(10,35)(11,34)(12,36)
(13,38)(14,37)(15,39)(16,41)(17,40)(18,42)(19,44)(20,43)(21,45)(22,47)(23,46)
(24,48)(25,50)(26,49);;
s4 := ( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)(30,31)
(33,34)(36,37)(39,40)(42,43)(45,46)(48,49);;
s5 := (51,52);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)
(12,24)(13,25)(14,26)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)
(35,47)(36,48)(37,49)(38,50);
s2 := Sym(52)!(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(27,30)(28,31)(29,32)
(33,36)(34,37)(35,38)(39,48)(40,49)(41,50)(42,45)(43,46)(44,47);
s3 := Sym(52)!( 3,27)( 4,29)( 5,28)( 6,30)( 7,32)( 8,31)( 9,33)(10,35)(11,34)
(12,36)(13,38)(14,37)(15,39)(16,41)(17,40)(18,42)(19,44)(20,43)(21,45)(22,47)
(23,46)(24,48)(25,50)(26,49);
s4 := Sym(52)!( 3, 4)( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(27,28)
(30,31)(33,34)(36,37)(39,40)(42,43)(45,46)(48,49);
s5 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope